
Scalable Nearest Neighbour Algorithms for High
Dimensional Data

Hussein Houdrouge
supervised by

Prof. Maks Ovsjanikov

Ecole Polytechnique - INF 513 - M1 Project

March 2018

1

Contents

1 Introduction 3
1.1 Nearest Neighbour Search Problem . 3
1.2 Objectives and Goals . 3

2 Algorithms’ Description 4
2.1 K-d Tree . 4

2.1.1 Construction Algorithm . 4
2.1.2 Search Algorithm . 4

2.2 Randomised K-d Tree . 5
2.2.1 Construction Algorithm . 5
2.2.2 The Search Algorithm . 5

2.3 The Priority Search K-Means Tree . 5
2.3.1 Construction Algorithm . 6
2.3.2 Search Algorithm . 6

3 Implementation Description 6

4 Experiments and Results 7
4.1 K-d Tree . 7
4.2 Randomised K-d Tree . 9
4.3 Priority K-Means Tree . 10
4.4 General Comparison of the Algorithm . 12

5 Conclusion 14

2

1 Introduction

The main aim of this project is to study several data structures that solve efficiently the
problem of Nearest Neighbour Search in Higher Dimensions. This problem is important
for many application in different fields such as Pattern Recognition, Computer Vision,
Data Bases, and Coding Theory. For instance, [1] presents a pattern matching method
based on fast Nearest Neighbour Search algorithms. The use of fast Nearest Neighbour
Search algorithms in [1] leads to speed improvement of several orders of magnitude.

1.1 Nearest Neighbour Search Problem

Consider a set of points P = p1, p2,, pn in a metric space M and a set of query points
Q where Q ⊂ M . The goal is to find for each point q ∈ Q the nearest point N(q) ∈ P .
That is,

N(q) = arg min
x∈P

d(q, x)

where d is a metric distance d : M ×M −→ R.
For some applications the user is not interested to find one closest point. He/She wants
to find k closest points. This version of the problem is called k-nearest neighbour. This
problem is defined as follow.

KNN(q, P,K) = A

where ‖A‖ = K, A ⊆ P and ∀x ∈ A, ∀y ∈ P − A, d(q, x) ≤ d(q, y).

The naive way to solve the Nearest Neighbour Search problem is to use Linear Search.
That is, scan all the data-set and report the point with the minimum distance. The
complexity of such algorithm is O(mn) where n is the number of points in P and m is the
dimension of the data. The d factor is the complexity of computing the distance. For the
K-Nearest Neighbour Search, the naive algorithm consists in sorting the points according
to their distance from the query point. The complexity of this algorithm is mainly the
complexity of the sorting algorithm O(n log n) .

1.2 Objectives and Goals

The main goals of this project are implementing and analysing the data structures in-
troduced in [2]. These data structures are Randomised k-d Tree and Priority Search
K-Means Tree. In addition, the project includes the implementation of the standard K-d
Tree because it is an essential part of the Randomised K-d Tree algorithm. Furthermore,
the project studies the performance of these data structures over data sets of different
nature such as SIFT (The scale-invariant feature transform) computed on classical paint-
ing and real world photos, which is 128-dimensional vector describes the local features
of an image, and data set sampled uniformly at random. Moreover, the project studies
the effect of the parameters of each data structure on their performance and precision.
After these experiments and observations, the project suggests guidelines to effectively
use each of the data structures.

3

2 Algorithms’ Description

This section describes the construction and the search algorithm of each data structure.
In addition, it analyses the computational complexity of each algorithm. The result of
this analysis is illustrated in the following table.

Data Structure Construction Algorithm Search Algorithm
K-d Tree O(n log n) O(log n)

Randomised K-d Tree O(Nn log n) O(L log n)
Priority K-Means Tree O(ndKI(log n/ log k)) O(Ld(log n/ log k))

where n is the number of points in the data-set. L and N for the Randomised K-d Tree
Stand for the maximum number of visited leafs and the number of trees respectively. d, K,
and I in the Priority K-Means Tree respectively stand for the dimensionality, branching
factor, and the maximum number of iteration in the K-Means algorithm.

2.1 K-d Tree

The k-d Tree is one of the main data structures used to solve the Nearest Neighbour
Search problem. It is a binary tree that splits the space recursively into two halves. The
usage of K-d Tree consists of two stages preprocessing (construction) stage and the query
stage. The following subsection describes the construction and the search algorithms as
they are presented in [3].

2.1.1 Construction Algorithm

The construction of the K-d Tree starts over the set of n points P in d-dimensional space.
Given a dimension i the construction algorithm computes the median of the coordinates
of the ith dimension. That is, the coordinate that splits the set of n points into two equal
sets L and R where ‖L‖ = ‖R‖ = n

2
. The algorithm is called recursively over the set L

and R until ‖R‖ = ‖L‖ = 1. And at each step, the splitting dimension changes as follow.
i := i+ 1 mod d.
In this construction algorithm, the most expensive operation is the computation of the
median. This operation is done by sorting the set of points which costs O(n log n).
However, one can optimise this operation and reduce its cost to O(n) using the median
of medians algorithm as it is described in [4]. Therefore, the running time on can be
expressed as

T (n) =

{
O(1), ifn = 1,

O(n) + 2T (dn
2
e), ifn > 1,

which solves to O(n log n). Furthermore, the space complexity required to construct the
K-d Tree is O(n) [5].

2.1.2 Search Algorithm

The search algorithm starts from the root and recursively walks through the tree according
to the value of the coordinate at the splitting dimension. If the coordinate at the splitting
dimension less than the median, the search-algorithm explores the left sub-tree, otherwise
it explores the right sub-tree. In addition, the algorithm maintains the distance to the
closest encountered point. This distance is initialised to infinity (R =∞). However, after

4

hitting a leaf node, R changes as follows R = min(R, distance(q, p)) where q is the query
point and p is the point at the leaf node. Then, the algorithm checks if the circle centred
at q with radius equals to R intersects any of the half-planes. If the test is positive, the
algorithm continues its search in the corresponding half-planes. Otherwise, it terminates
immediately. The complexity of this algorithm in the best case is O(log n) and in the
worst case O(n) [3].

2.2 Randomised K-d Tree

The Randomised k-d Tree algorithm [6] is an approximate nearest neighbour algorithm
[2]. It consists of several Randomised K-d Trees searched in parallel. Having different
space partitions (K-d Trees) increases the chance of finding a good initial point near the
query point which leads to a good approximation.

2.2.1 Construction Algorithm

The construction of the Randomised K-d Tree is the construction of several K-d Trees
with the difference that the splitting dimension is chosen at random from the top ND

dimensions with the highest variance. In our implementation and the implementation
of [2], ND is fixed to five. In this approach, choosing the splitting dimension adds an
additional overhead on the construction time. The cost of this overhead is at least O(dn)
where d is the dimension of the space and n is the number of points. The computational
complexity of this algorithm is still O(n log n) but up to a different constant since it
builds multiple K-d Trees instead of one.

2.2.2 The Search Algorithm

The search algorithm maintains a shared priority queue across all trees. This priority
queue is ordered by increasing distance to the decision boundary (half-plane) [2]. In
addition, the algorithm keeps track of the visited data points to avoid later exploration.
The algorithm starts by exploring the closest point from all the trees i.e the point on the
top of the priority queue. The algorithm explores the tree in the same way as the K-d
Tree search algorithm described in the previous section. However, the search algorithm
is parameterized by the maximum number of leafs to be visited. This parameter is an
important factor to determine the degree of approximation. Increasing this parameter
leads to a better approximation. The computational complexity of this algorithm is the
cost of searching the K-d Tree multiple times. The number of the search is bounded by
L the maximum number of visited leafs which leads to O(L log n) time complexity.

2.3 The Priority Search K-Means Tree

This tree tries to take the advantage of the natural structure of the data by clustering it
in a hierarchical fashion. At each level, the tree clusters the data into K clusters. Solving
Nearest Neighbour search by clustering the data point has been used before by [7], [8],
and [9].

5

2.3.1 Construction Algorithm

The construction algorithm takes the parameter K, the data set P of dimension equals
to d and size equals to n, the maximum number of iterations Imax, and centre selection
algorithm Calg. The parameter K determines the maximum size of the cluster at the leaf
node. In addition, it determines the number of the children at each level i.e the number
of sub-clusters.
The algorithm starts by applying the K-Means algorithm to cluster the data into K dis-
tinct clusters. The K-Means algorithm makes use of Calg to pick the initial centroid for the
K cluster. In addition, the maximum number of iterations forces the K-means algorithm
to halt if the centroids of the clusters do not converge to the clusters’ mean. After cluster-
ing the current data, each cluster forms a node. Then, the algorithm is applied recursively
on each cluster (node) until the size of the cluster becomes less than K. According to [2],
the computational complexity of the construction algorithm is O(ndKImax(log n/ log k)).
O(ndKImax) is the complexity of clustering a level in a tree. And there is (log n/ logK)
level. Combining the two results yields O(ndKImax(log n/ log k)) time complexity.

2.3.2 Search Algorithm

The search algorithm maintains two priority queues PQ and R. The first one is ordered
in increasing order from the query point to the center of the unexplored clusters. The
second one sorts the retrieved data point in increasing order of the distance to the query
point. The search algorithm starts exploring the tree from the root to reach the closest
leaf. At the leaf node, the algorithm adds all the stored points in the leaf to R. And At
each node, it adds the unexplored clusters to PQ. While PQ is not empty and while the
collected points in R are less than a given limit. The algorithm pulls nodes from PQ and
explores them. At the end, it returns the top K points in R.
According to [2], the complexity of the search algorithm is O(Ld(log n/ logK)). During
each top-down traversal, the algorithm needs to check O(log n/ log k) inner nodes. The
algorithm requires L/k top-down traversal where L is the maximum number of points
collected by R. In addition, while traversing the tree the algorithm computes at each
level O(Kd) distance where d is the dimension of the space. Combining all these results
yields to O(Ld(log n/ log k)) complexity.

3 Implementation Description

The project is implemented using C++14. It does not rely on any external library other
than the standard C++ library. The implementation makes use of the object-oriented
paradigm (OOP). In addition, the implementation is pointer based implementation. How-
ever, it can be done without pointers which save space. Moreover, the implementation
does not replicate the actual data in nodes but it uses the indices in order to save space.
Furthermore, the priority queues are implemented as Red-Black Tree according to C++
specification. However, a different choice of these data structures and implementation
techniques may lead to a better result concerning the performance and the storage space.

Concerning the structure of the implementation, there is one main component that
captures the base structure (the Tree structure) for the three main algorithms. In addi-
tion, each algorithm consists of one component that contains its construction and search
algorithms.

6

Considering the implementation of the algorithms, it follows the description of [2]
and [3] (already mentioned in the previous section). The algorithms are implemented
recursively as they are described.

4 Experiments and Results

In order to study the mentioned data structures, we performed many experiments. These
experiments report the effects of changing the parameters on the performance and the
precision of the search and the construction algorithms. The performance is measured in
time(seconds). The precision is measured according to the following formula.

d(p, q) ≤ (1 + ε)d(Pk, q)

where q is the query point, d is the distance function. For the Priority k-Means Tree
testing, Pk is the kth furthest point from the exact answer returned by the linear search.
For the Randomised K-d Trees testing, Pk is the correct answer returned by the linear
search. Therefore, p is a correct solution if it satisfies the above inequality. For the K-d
Tree, ε is fixed to zero since K-d Tree is an exact algorithm in contrast to the Randomised
K-d Tree and the Priority K-Means Tree where epsilon is chosen between zero and one. It
is important to notice that there is no single ”ideal” algorithm, each algorithm performs
differently in different scenarios. Thus, one of our goal is to evaluate the performance
with respect to both changing the data set parameters (dimension, size, and structure)
and the algorithms’ parameters.

4.1 K-d Tree

To assess the performance of the K-d Tree, the performance of the K-d Tree is compared
to the performance of the naive algorithm (Linear search). First, the dimension is fixed
to two and the size of the data is variable. The dataset in the following experiment is
sampled at random from a uniform distribution (i.e we sampled the coordinates of the
vector uniformly at random).

The result illustrated in Figure 1 shows that the K-d Tree is unbeaten independently
from the size of the data (with fixed dimension equals to two). However, fixing the data
size and changing the dimensionality of the dataset shows a significant change in the K-d
Tree’s behaviour. The result illustrated in Figure 2 shows how the K-d Tree becomes
similar (even worse) than the linear search after the dimension of the data exceeds ten.
This result makes the developments of new data structure necessary because most of the
nearest search problems are performed over data in high dimension.

7

Figure 1: The change of the performance in seconds with respect to the size of the dataset
(The K-d Tree is represented in green and the naive algorithm in red).

Figure 2: The change of the performance in seconds with respect to the dimensionality of
the data. The k-d Tree performance is illustrated in red, and the linear search performance
is illustrated in yellow.

8

4.2 Randomised K-d Tree

To have a better understanding of the Randomised K-d Tree, the following experiment
measures the effects of changing the parameters on its performance and precision. Since
the Randomised K-d Tree algorithms consist of multiples trees, changing the number
of trees is an important factor to understand the behaviour of this data structure. In
addition, this experiment is done over SIFT (The scale-invariant feature transform) with
fixed dimension equals to 128 and fixed data set of size. From Figure 3, one can infer
that increasing the number of trees improves the performance of the search algorithm.
However, after certain value increasing this number becomes ineffective. In addition, a
separate experiment yielded that the number of trees does not have a significant effect on
the precision of the search. Furthermore, another experiment measured the effect of the

Figure 3: The change of the performance in seconds of Randomised K-d Tree with respect
to the number of tree.

number of visited leaves on the performance and on the precision of the search results.
we did this experiment for epsilon equals to 0.3 and 0.7. The following graphs (Figure 4)
illustrate the results where the precision is measured in percentage (the red plot) and the
performance is measured in seconds (the yellow plot). One can notice, that increasing
the number of visited leaves decreases the performance. But, it improves the precision
as it is shown in figure 4(a) (the fluctuation of the precision becomes steadier). This
observation (results) confirms the claim in [2], the number of visited leaves across all the
tree determines the degree of the precision. Moreover, increasing epsilon from 0.3 to 0.7
yields to a significant improvement in the precision without affecting the performance.

9

(a) Epsilon = 0.3 (b) Epsilon = 0.7

Figure 4

4.3 Priority K-Means Tree

Similarly to the previous experiments, the following one measures the effect changing
the parameters on the precision and the performance of Priority K-Means Tree. This
data structure has three important parameters K, Imax, and L. First, we measured the
impact of changing the value of K. Figure five (a) illustrates the results. It is clear that
the performance decreases slowly as K increases. However, the precision does not have
a regular pattern, but for a certain K, it takes a maximal value and remains constant.
Concerning the number of iterations, One can notice that this parameter does not have

10

(a) The change of the precision (in yellow) and the performance (in red) with
respect of the change of K

(b) The change of the precision (in yellow) and the performance (in red) with
respect of the change Imax

Figure 5

a significant impact on the performance and the precision. Figure five (b) shows that the
patterns in the performance and in the precision do not change in a regular manner with
the change in Imax.
Moreover, the experiment tests the effect of changing L, the maximum number of collect

11

points. As Figure 6 shows, increasing L has a significant impact on the precision. And
in the same time increasing L has no significant impact on the performance.

Figure 6: The change of the precision and performance with respect to the maximum
number of collected points. (Precision in Yellow, Performance in Red)

4.4 General Comparison of the Algorithm

This section will present a general comparison for the main three algorithms and linear
search. The comparison is between of the search and construction algorithms for each
data structure. The experiment is done over SIFT (Vector with 128 dimension each)
as in [2]. The comparison of the construction algorithms is presented in Figure 7. The
K-d construction of the k-d Tree is obviously the fastest. However, the performance of
construction of the Randomised K-d Tree depends on the number of trees, in this case it is
ten. Increasing this number will affect negatively the construction time performance but
it will improve the search performance. Concerning the search algorithms’ performance,
the K-d Tree and the linear search have almost the same performance (Figure 8) because
of the dimensionality of the data. The performance of the K-d Tree decreases with the
increase of the dimensionality of the data as it is illustrated in Figure 2. However, the
Randomised K-d Tree has the best performance in term of accuracy and speed, then
it comes the Priority K-Means Tree as it shown in Figure 8. Furthermore, increasing
epsilon from 0.3 to 0.7 increases the precision from 87% to 99% for the Randomised
K-tree, and increases the precision from 70 to 80% for the Priority K-Means Tree. In
addition, increasing the K parameter for the Priority K-Means tree from 4 to 16 with
epsilon fixed to 0.7 increases the precision from 80 % to 99%.

12

Figure 7: The change in the performance of the construction algorithms with respect to
the change in the number of points. The performance of the k-d tree is plotted in red,
the Randomised k-d tree (10 trees) is plotted in blue, and the Priority k-Means Tree is
plotted in green.

Figure 8: The performance of the search algorithms with respect to the number of points.
The performance of the K-d Tree is plotted in res, the linear search in yellow, Randomised
K-d Tree in blue, and Priority k-Means Tree in yellow.

13

5 Conclusion

In conclusion, Nearest Neighbour Search is one of the most important problems in many
fields. Solving this problem in low dimensions can be done efficiently using K-d Tree.
However, increasing the dimensionality of this data renders this data structure ineffec-
tive. Then the use of different data structure such as Randomised K-d Tree and Priority
K-Means Tree becomes essential. But these data structures are affected by many parame-
ters, therefore this project aims to discover the effects of these parameters and to provide
the following guidelines to a better use of the data structures. A common observation for
the two data structures is increasing epsilon always yields better results this means that
we are almost very close to the correct answer by a factor of two in the worst case.

For the Randomised K-d Tree,

• Increasing the number of trees will lead to a better performance. However, after a
certain threshold, increasing the number of trees becomes invective this is due to
the increase in the use of memory [2].

• Increasing the number of visited leaves will lead to a better precision without a
serious effect on the performance.

For the Priority K-Means Tree,

• Increasing the branching factor K affects slightly the performance.

• Increasing the Branching factor improves the precision.

• Increasing the number of collecting points L leads to a significant improvement in
the precision with no significant effects on the precision.

• The number of iteration for the K-Means algorithm has no notable effect.

14

References

[1] D.G. Lowe, ”Distinctive image features from scale-invariant key-point,” Int. J. Com-
put. Vis., vol 60, no. 2, pp. 91-110, 2004.

[2] Marius Muja, David G. Lowe. ”Scalable Nearest Neighbor Algorithms for High Di-
mensional Data”, IEEE PAMI, Vol. 36, No. 11. (2014), pp. 2227-2240.

[3] Shakhnarovich, G., Darrell, T. & Indyk, P. (2006) Nearest-Neighbor Methods In
Learning And Vision Theory and Practice. MIT Press

[4] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2009)
[1990]. Introduction to Algorithms (3rd ed.). MIT Press and McGraw-Hill. ISBN 0-
262-03384-4.

[5] De Berg, M. Cheong, O., Kreveld, M., Overmars, M. (2008). Computational Geometry
Algorithms and Applications (3rd ed.). Springer.

[6] C. Silpa-Anan and R. Hartley, ”Optimized KD-Trees for fast image descriptor match-
ing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2008, pp. 1-8.

[7] K. Fukunaga and P. M. Narendra, ”A branch and bound algorithm for computing
k-nearest neighbors,” IEEE Trans. Comput., vol. C-24, no.7, pp.750-753, Jul. 1975.

[8] S. Brin, ”Nearest neighbor search in large metric spaces,” in Proc. 21th Int. Conf.
Very Large Data Bases, 1995, pp. 574-584.

[9] D. Nister and H. Stewenius, ”Scalable recognition with a vocabulary tree,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recog., 2006, pp. 2161-2168.

15

	Introduction
	Nearest Neighbour Search Problem
	Objectives and Goals

	Algorithms' Description
	K-d Tree
	Construction Algorithm
	Search Algorithm

	Randomised K-d Tree
	Construction Algorithm
	The Search Algorithm

	The Priority Search K-Means Tree
	Construction Algorithm
	Search Algorithm

	Implementation Description
	Experiments and Results
	K-d Tree
	Randomised K-d Tree
	Priority K-Means Tree
	General Comparison of the Algorithm

	Conclusion

