Assignment 2 Hussein Houdrouge (ID: 101 232 193)

Question 1.

Let B be the bucket size (B=3).

Suppose we have the following Domain

we want to insert the Gollowing point set
$$P = \{(1, 2), (1, 1), (3, 2), (1, 4), (5, 2), (8, 3), (9, 5)\}.$$

Now, we insert P3 = (1,4). Since the bruket size is 3 and me have 4 points by now We must split the domain and the buckets. we add a new scolor (10,0) Inscrting Py = (5,2) (10,0)

The split history tree - Now, consider the following set of points that me wants to delete. D = {(1,1), (1,4), (3,5)} < P - Deleting P = (1,1)

Question 2.

. Petermine of a meeting among all n porticipants is possible at all.

- For such a meeting to happen the following must

(1) - all the n upper comes must interest.

(2) all the n lower comes must intersects.

(3) . The intersection of the intersection of the n upper cones muth the intersections of the n love cones

must not be empty

_ So, our problem now, quien n circles in 1R2 how con me check if all intersects or not pick two circles $C_i = (P_i, r_i) & C_i = (P_i, r_i)$ where Bk is the center & Tk is the radius, K = 1,39. C; naterscito C; \iff $d(P_i,P_j) \iff P_i+P_j$. So, the olyonithm mill pick any two circles. & check of they intersect, of they don't it can return " no pomble meeting" - otherwise, it will compute the intersection points + the curves that cornect them. (there one 2 intersection points).

Region I Compute these two goints

9: 8 9: 8 the oncs

9: That comment them. _ Now the algorithm will pick another circle, say $C_e = (R_e, r_e)$. 8 test if it intersects suith.

The region R. this region is

Anced as a requerce

of oncs. & it is easy

to check if a wick intersets

an orc.

Then the algorithm continue in the same way - the line complexity is the number of circles in Times He time to check of a circle intersects a convex region - thus, it is nx number of the ones that make the consear

$= O(n^2)$ in the worst cose.
- Suppose now, we have the intersection of all lower
8 yyer cones.
- Since the intersection of a convex sets is commen
& a correr set is a connected set.
all the upper (a lower) intersects in one set.
lown intersution 4
intersection 4
upper intersection.
_ now we trace back the edges of the region in Tie
to check if the intersection of the intersection of
the comes is not empty.
- the time complexity should be quadratic if me
want test one side the region with all the other sides

Determining of a meeting is possible with n-1 participants.

. It is bancally similar algorithm as before.

But we might need to keep track for more than one intersection region

In the first step, pick 2 circles.

Cillini) & Cillini).

_ if they do not intersects.

fick another wiche Cx

if C_{K} is disjoint from the previous time cercles we con immediatly say no meeting is

. Determing if a meeting is possible that is held as follows: For one how everyone meets, then, hey all travel together to a second location and continue the meeting for onother hour. - Increase the departure line of all the participants from their previous location, & Decrease the animal time to their next location by one hour. _ So, now we can think that the duration of their meeting is zero hour. - Therefore, the problem now is to check if they can all travel from one location to the other (all at the same time) - This problem is equivalent to check that the two locations one in the some intersection area. - Thus, the time complexity is linear in the size of the boundary of the intersection volume is

i.e the complexity of checking if a point lies in a convex 3 dimensional polyhechon.

Question 3: Suppose we have a majo I stored a a Mesh (triangular Nesh) and me want to transform it to a patalite S 1 S

we have

constraint on the size of the object that we can translate. - However, we can do some computation over M. and send it to 8 where 8 can also do some computation We take the Hap I and we can remove the area with lettle interest. for example: we do not need a lot of Twiongles to represent seas & desuits as they look homogeneous and they have very might structure.

_ the sec	cond step	is to voe	the progressive	
			ctive refinement se	hem
		clan).		
			a coarser Mesh	
			of voten splits	0
Thee.	GE Wewell	as a pole	of Ginory search	1
	sur send	Ho, mith r	ruba plit information	۰.
then S,	con execut	to Selective	refinement for	
	each vertea	e in the ne	gion of interests.	