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1 Introduction

Low Binary Auto-correlation Sequences (LABS) is a challenging computational problem with many appli-
cations in different fields such as communication engineering, mathematics, physics, and computer science
[PM16]. For instance, engineers use these sequences as modulation pulses in radar and sonar ranging, and
physicists use the optimal solution of the LABS’s problem as the ground state of a generalized one dimen-
sional Ising spin system with long-range 4-spin interactions [BBB17]. In this project, we aim to implement
and test different optimization techniques and give their statistical comparison. In the following subsection,
we will define the problem. In section 2 we will provide a description of the algorithms that we chose to
implement and compare. Then we will briefly mention some implementation details. After that, we will
show our experimental results.

1.1 Problem Definition

The main objective of the problem is to find a binary sequence S of length N that optimizes a given function.
Elements si of S are in {−1, 1}. The auto-correlation of S is denoted by Ck(S) and defined in the following
way:

Ck(S) =

N−k∑
i=1

sisi+k, for k = 0, ..., N − 1.

The energy of S is defined as:

E(S) =

N−1∑
k=1

Ck(S)2. (1)

Our goal is to find S minimizing E; though it is usually more convenient to rephrase the task as a maxi-
mization problem, where we maximize the merit factor

F (S) =
N2

2E(S)
. (2)

In this work, we formulate the task as the maximization of merit factor F . We also view S as a binary vector
by implicitly mapping ”false”s to −1s and ”true”s to 1.

2 Algorithm Description

In this section, we aim at describing the algorithms implemented in our project. We review several Evo-
lutionary Algorithms (EAs), tabu search (TS) and simulated annealing (SA). Most effective EAs we use
combine local and global search heuristics with the classical approaches such as recombination, mutation,
etc. All of the algorithms are running in the timeout setting, stopping when the given timeout value is
exceeded.

2.1 1+1-EA Algorithm

1+1-EA is a very simple optimization algorithm. It starts by initialising the binary sequence S randomly.
Then, the variation phase consists of creating a new sequence y by deriving it from S using standard bit
mutation. It is performed in the following way: we choose a random number ` from binomial distribution
bin(|S|, 1/|S|), then we flip the chosen ` bits from S with probability 1

2 . After creating y, we evaluate F on
both y and S, and we keep the optimal value. We stop when the timeout is exceeded.

2.2 (µ, λ) Algorithm

The (µ, λ) algorithm is another evolutionary algorithm. It starts with a population of size µ, and uses
it to produce a λ children. The child is chosen either by a crossover (we tested a uniform and one-point
crossovers), or by the mutation. After the mutation, a selection process is performed – µ offsprings with the
highest fitness value are turned into the main population.
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2.3 Steepest Ascent Local Search Algorithm (SALS)

The traditional SALS starts from the initial sequence S, then visits all its neighbors by flipping one bit at
a time. It replaces the initial sequence by the best neighbor. It continues in the same manner until no
improvement is possible. In our timeout-based setting we choose some value S∗ randomly and run SALS
on it. In the next iteration, we apply the standard bit mutation to it and repeat the procedure. At each
iteration, we check if the result of SALS has greater fitness value than our current optimum, and update in
this case. The detailed description of the basic SALS is given in [GCF09].

2.4 Simulated Annealing (SA)

SA is an optimization algorithm inspired by the physical process of annealing [BFM18]. It begins with the
initial high temperature T and the state S . Given a neighborhood relation, SA generates uniformly at
random a neighbor N of S. Then, if N optimizes the merit factor F , we assign N to S. Otherwise, we have
the option to accept N , even if it has a lower merit factor, with probability

e
−(F (S)−F (N))

T .

What we just described until now is known as The Metropolis Algorithm as it is explained in [KT06]. SA
is just a simple modification to this algorithm which consists of lowering the temperature T at each step
according to a given schedule. A detailed discussion of the cooling scheduling can be found in [NA98]. In
our implementation, we reviewed two main common cooling schedules. The first one is the linear schedule

T (t) = T0 − µt

and the second one is the exponential schedule

T = T0α
t

where µ, α ∈ (0, 1). we can summarise the SA by the following pseudo-code based on the one in [KT06]. In
the experiments, however, we only used the linear cooling, since it showed itself to perform better.

Algorithm 1 SA

Start with an initial random solution.
let T ← T0
for i = 1 to itr do

let N be chosen uniformly at random from the neighbour of S.
if F (N) ≥ F (S) then
S ← N

else
with probability e

−(F (S)−F (N)
T let S ← N

end if
cool the System according to the given Schedule.

end for

2.5 Tabu Search (TS)

Tabu search is another local search strategy that can escape local maximums. Our description of the
algorithm is based on the [GCF09] up to redefining it as a maximization procedure. The main idea behind
the TS is to maintain a tenure tableM of size N , such that we can accept a neighbor only ifMi ≤ k where
k is the current iteration. In the beginning, M is empty. The algorithm starts by exploring the neighbors
of an initial solution and only accepts the neighbor if it is better than the optimal value or the number of
iteration greater than its Tabu value (Mi ≤ Number of Iteration). Algorithm 2 presents the pseudo code of
Tabu Search based on the [GCF09].
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In our timeout setting we do a slight modification. Instead of iterating maxIters times, we loop until
the timeout value is exceeded, and re-randomise the value each maxIters steps.

Algorithm 2 Tabu Search

for i = 1 to L do
Mi ← 0

end for
Initialise currentSequence Randomly
minTabu← maxIters

10

extraTabu← maxIrers
50

optSequence← currentSequence
foptSequence ← F (optSequence)
for k = 1 to maxIters do
f+ = −∞
for i = 1tol do
neighbour ← flip(currentSequence, i);
fneighbour ← F (neighbour)
if k ≥Mi or fneighbour ≥ foptSequence then

if fneighbour ≥ f+ then
f+ ← fneighbour; S+ ← neighbour; I+ = i

end if
end if

end for
currentSequence← S+

Mi+ ← k +minTabu+ URand[0, extraTabu)
if f+ ≥ foptSequence then
optSequence← f+; foptSequence ← f+

end if
end for
return optSequence

2.6 Memetic Algorithms (MA)

Memetic Algorithm is a meta-heuristics algorithm that makes use of local search algorithms as a subroutine.
Our implementation is based on the [GCF09]. The main idea behind the MA is to apply evolutionary
strategies on the vectors in our population, while the actual optimization is performed by the local search
algorithm. First, we create a random population with a given size. Then we apply some recombination
techniques with a probability px to produce the offspring population from the parents with the option to
mutate the offspring with probability pm. An example of a recombination technique could be a uniform
crossover, single point crossover, or K-points crossover (we use a single point crossover). At this stage, the
algorithm runs a local search algorithm such as Tabu Search on the offsprings. After optimizing all the
offsprings, the algorithm replaces the main population with the offspring one. The algorithm repeats the
same process until it reaches the stopping condition (timeout limit in our case). A more detailed description
is mentioned in [GCF09].

3 Implementation Details

We implemented all the above-motioned algorithms in C + +. We used also python to perform the data
analysis. One can access the detailed code of our implementation in the GitHub repository1. To accelerate
some features of the algorithms, we modified the implementation of some function such as standard bit
mutation as it is described in section 2.1. Moreover, we used a different algorithm to accelerate the evaluation

1 https://github.com/CHoudrouge4/osh
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of the merit factor of a neighbor sequence in TS and SALS. To compute the merit factor after one flip, we
used the algorithm described in [GCF09]. This algorithm reduces the complexity of computing the merit
factor from O(N2) to O(N), and it goes as follows. First, it creates a (N − 1) × (N − 1) table T (S) such
that T (S)ij = sjsi+j for j ≤ N − i. Then, it creates an array C(S) of length N − 1 such that C(S)k = Ck(S)
for k ≤ N − 1. We can notice that flipping one bit in S multiplies the cell where the bit is involved by −1.
Therefore, to compute the new value, it is enough to take the right Ck and subtract 2 times the cells where
the flipped bit is involved. For more details consider the following pseudo-code.

Algorithm 3 FlipValue(S, i, T , C)
E ← 0
for p = 1 to L− 1 do
v ← Cp
if p ≤ L− i then
v ← v − 2Tpi

end if
if p ≤ i then
v ← v − 2Ti−p

end if
E ← E + v2

end for
return N2

2E

Implementation of all other algorithms are not heavily optimized and follow the pseudocode, with the
exception of obvious language-dependent optimizations and reducing the data accesses.

4 Experimental Results

Solvers and parameters Our implementation of 1+1-EA and (µ, λ) were too slow to get any results we
can argue about, so we excluded them from the practical consideration. We have collected and analysed
the data for the SA, SALS, TS and MA (over TS) algorithms. The parameter choice of SA was motivated
by the simple iterative grid search in the parameter space, and the final values we use are: linear cooling
with µ = 0.15 and t0 = 15000; We suspect that these parameters give solver more freedom to escape the
local optima, which might lead to the best observed average runtime. Parameters for TS are choosed almost
as in [GCF09]: we choose the maxIter randomly in the range [N − N/4, N + N/4], and set minTabu =
maxIter/10, extraTabu = maxIter/50. For the MA (over the TS), we set the population size to 130, use
px = 0.9 and pm = 1/N – these parameters again follow the [GCF09], but the population size is chosen
slightly higher than the suggested 100 because of the empirical evidence of the former leading to the better
performance.

Experiments setup All our experiments were run on the 8 core Intel Xeon at 3GHz (Amazon AWS
c5.2xlarge instance). We have run all the experiments on all 8 cores, considering the performance decrease
due to the full CPU use negligible. The measurement techniques we used are based on the strategies
developed in [BBB17] and [GCF09]. As in [BBB17], we collected both the runtime values that follow the
execution and cntProbe – the number of calls to the LABS instance. But in our particular implementation,
the average correlation between these variables (for the particular runner over the range of instance sizes)
is sometimes as low as 0.81, so we decided not to include this parameter into the analysis and only operate
with the raw runtime. We call hits the number of times the solver achieved the optimum value within the
time limit. The hitRatio is the number of hits over the number of runs. All the runs were performed with a
fixed timeout of 90 seconds averaged on 50 runs, and we considered the values of N from 15 to 55 for all the
algorithms except the SA, which was tested up to N = 40. All the code used for the analysis is available in
the repository as a single ipython notebook.
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Figure 1: Runtime analysis of the SA solver

Results analysis First, we analyze the asymptotic runtime of the algorithms within the range of N that
leads to the hitsRatio close to one. For each N , the distribution of runtime is close to the exponential, and
we would like to know how the mean and percentiles behave with the growth of N . Figures 1 to 4 illustrate
the asymptotic performance of the solvers. SA performance is the lowest among the solvers reviewed, and
we start to exhibit the low hit ratio already at the low N , other solvers start to slow down at bigger values.
We perform the exponential curve fitting to the data to predict the runtime for the bigger N (as it is done
in [BBB17], using the mean runtime value and the three quantiles. The second plot of these figures shows
the asymptotic behaviour of our predicted model.

Next, in the Figure 5, we compare all the asymptotic runtime models that we have built, observing the
bad asymptotic behaviour of SA and overall better runtime of the other three solvers, with TS leading.

Figures 6-9 show how the runtime value is distributed for the given N. Each chart has its asymptotic
model added, for the 95th percentile (the value one can choose, for instance, for the timeout) and the mean.

Figure 10 represents how far are the solution we have obtained from the global optimum. The interval
of instance size is selected such that for less N we get the hitRatio = 1.

Overall, we see that the performance of the solvers decrease in the following sequence: TS, MA, SALS,
SA.

5 Conclusion

We have implemented, optimized and tested a number of different algorithms. The results obtained show
among the four algorithms tested, the SA has the lowest convergence speed, while TS is the fastest one. We
could not reproduce the analysis of [GCF09] showing the strictly better general performance of MA over the
TS (in our implementation, MA is slightly slower than TS), which may be due to the implementation details
slowing down the MA.

6



15 20 25 30 35 40
Instance size (N)

0

20

40

60

80

100

Ru
nt

im
e,

 s

Runtime of "sals" solver
mean: 0.000205*exp(0.297183*x)
q50: 0.001517*exp(0.264692*x)
q75: 0.001512*exp(0.269192*x)
q95: 0.004158*exp(0.245399*x)
mean
q50
q75
q95

20 30 40 50 60 70 80
Instance size (N)

10 2

100

102

104

106

Ru
nt

im
e,

 s

Estimated runtime of "sals" solver

Figure 2: Runtime analysis of the SALS solver
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Figure 3: Runtime analysis of the MA solver
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Figure 4: Runtime analysis of the tabu solver
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Figure 5: All runtime models comparison
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Figure 6: Runtime performance of the SA solver
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Figure 7: Runtime performance of the SALS solver
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Figure 8: Runtime performance of the MA solver
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Figure 9: Runtime performance of the tabu solver
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Figure 10: Relative distance to the optimum. The hit ratio of SA starts to decrease at N = 26, while other
algorithms start to experience low hit ratios only at N > 40.
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[GCF09] José E. Gallardo, Carlos Cotta, and Antonio J. Fernández. Finding low autocorrelation binary
sequences with memetic algorithms. Applied Soft Computing, 9(4):1252 – 1262, 2009.
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