The fundamental broup and Covering Spaces. Recall: A loop in a topological space X is a path that starts and end at the same point roeX We might call xo a base point. Def: The fundamental group of X relative to the base point xo, normally denoted by TI, (X, xo), is the set of path homotopy clases of loops baset at xo, with the operation *. Remark: Ti, (X, ro) is sometimes called the first homotopy group. of X. ("There is a more general subject called Homotopy theory"). Ex: IT, (IR", x0): the fundamental group of the euclidean n-space is the Trivial group & [Cero] }. . If is a loop in IR", then the straight line homotopy is a path homotopy between & and and the constant path at x. $F(x,t) = (1-t)F(x) + tx_0$. If X is a comex set of IA", the same apply. precisely the unit ball $B^n = \{x \mid x, x + - - + x_n^2 \le 1\}$ has trivial fundamental group.

Def: Let a be a path in X from zo to n. Define the map â: Ty (X, x) -> Ty (X, x) by the equation $\widehat{\alpha}([f]) = [\overline{\alpha}] * [f] * [\alpha].$ The inverse. if f is a loop at xo. then ax f * a is a loop based at a, $x_{6} \alpha x_{1}$ Theorem: The map & is a group isomorphism proof; Stepl; à is a homomorphism. $\widehat{\alpha}([f]) * \widehat{\alpha}([g]) = ([\widehat{\alpha}] * [f] * [\alpha])$ $*[\widehat{[\alpha]} * [\widehat{\beta}] * [\alpha])$ t a xi $= \left[\alpha \right] * \left[f \right] * \left[g \right] * \left[\alpha \right].$ $= \hat{a}([f]*[g])$ - Well show that B that denotes a is the inverse of $\widehat{\alpha}$. $\mathcal{E}^{\prod_{i}(X, x_{i})}$ $\widehat{\mathcal{B}}([R]) = [\overline{\mathcal{B}}] * [L] * [B] = [\alpha] * [L] * [\overline{\alpha}]$ $\widehat{\alpha}(\widehat{\beta}[4]) = [\overline{\alpha}] * [[\alpha] * [h] * [\alpha]) * [\alpha]$ =2h]

And Similarly $\widehat{B}(\widehat{a}([f])) = [f]$ for all $[f] \in T_{i}(X, x_{o})$ Corollary If X is path connected and x and x, are two points of X, then TI, (X, x,) is isomorphic to TI, (X, x,). - Ocal only with path connected Spaces when Studying the fundamental group. Def: X is simply connected of it is a path-connected space. $\begin{cases} & T_1(X, x_0) \text{ is the trivial group for some } \\ & \chi_0 \in X, \text{ consequently for every } x_0 \in X. We denote \end{cases}$ this bact, TI, (X, ro) is trivial, by TI, (X, ro)=0. Lemma: Suppose X is simply connected. Let f and g be two paths in X from x_0 to x_1 , then $f \simeq p g$. Proof: f * g is a loop on X based et x. - this loop is path homotopic to a constant loop due to the fact That X is simply connected. $\left[\alpha * \overline{\beta}\right] * \left[\beta\right] = \left[e_{z_0}\right] * \left[\beta\right].$ $= \sum [\alpha] = [\beta].$

It seens that the fundamental group is a topo logical invarient, However, we want to prove it formally. => intraduce homomorphism induced by a continuous map. - Suppose h: X ->>> is a continous map. that comies the point $x_0 \in X$ to the point $e \in Y$. Notation: $h: (X, x_0) \longrightarrow (Y, y_0)$. yoeY. if t is a loop in X based at x, then hof: I -> Y is a loop in Y based at yo. Def: Let $h: (X, x_0) \longrightarrow (Y, y_0)$ be a continuous map. Define $h_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0)$ by the equation $h_*: ([f]) = [hof]$ hy is called homomorphism induced by h, relative to the base point xo.

_ h is bomomorphism is due to. $(\lambda \circ f) * (\lambda \circ g) = \lambda \circ (f * g).$ $(h_{x_0})_{*}: \pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0).$ $-(h_{X_{i}})_{X} ; \pi_{i}(X, x_{i}) \longrightarrow \pi_{i}(Y, y_{i}).$ $if x_0 = x$ then h_X . Theorem (functorial properties) If $h: (X, x_0) \longrightarrow (Y, y_0)$ and $k: (Y; y_0) \longrightarrow (Z, z_0)$ are continuous, then $(K \circ h)_* = K_* \circ h_*$. If i: (X, x_o) ___ (X, x_o) is the identity map, then in is the identity homomorphism. Proof. By definition $(k_{\circ}h)_{*}([f]) = [(k_{\circ}h)_{\circ}f]$ $(k_{*}\circ h_{*})([f]) = k_{*}[h_{*}([f]) = k_{*}[h_{\circ}f]$ = [kohot].Similarly, $i_*([f]) = [iof] = [f]$. Corollary: If $\lambda: (X, x_0) \longrightarrow (Y, y_0)$ is a homeomorphism of X with Y, the h_{\star} is an isomorphism of $T_{I_1}(X, x_o)$ with $T_{I_1}(X, y_o)$.

 \rightarrow (X, z,) be the inverse of h. i_* , The identity map of (X, z_o). Proof. Let $K: (Y, y_{o})$ -Then $K_{*} \circ h_{*} = (K \circ h)_{*} =$, the identity map of $h_{\mathbf{x}} \circ \mathbf{K}_{\mathbf{x}} = (h \circ \mathbf{K})_{\mathbf{x}} = \int_{\mathbf{x}}$ are the identity homomorphisms (Y, y). Since in and j* of the groups TI, (X, x0) and TT, (Y, Y,), respectively, K* is the inverse of h*. Covening Spaces. - Our zoal is to compute some fundamental groups that are not trivial. - The notion of covering space mill be one of most important tools to carry this Pask. - Reimann Surfaces and complex manifolds. May a nay not Sudy Ohem). Def: Let P: E ____> B be a continuous Surjective map. - the open Set U of B is said to be evenly covered by p if the invese image of p-1(U) Can be written as the union of disjoint open Sets Va in E such that for each a, the restriction of p to Va is a homeomorphism of Va onto U.

The collection & Vay mill be called a partition of p-1(U) into dices $\left(\begin{array}{c} & P & I(u) \\ & V_{A} & P \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ Def: Let P: E ____ B be a continous Surjective. If every point p of B has a neighbor hood U that is evenly covered by p, then p is called a covering map, and E is said to be a covering space of B.

Note if p: E -> B is a covering map, then for each b & B the subspace P'(b) of E has the discrete topology. P⁻¹(P) A. Va is one point therefore this point is open Note 2: if P: E _____ B is a covening map, then p is on open map. Hat is it sends open set to open sets. - Suppose A is open in E. Given $z \in P(A)$, theorem a neighborhood Mot x that is evenly covered by P. - I'Val gontion of P'(U) into Slices - There is get a st p(y) = z. y < Vo then VolA is open in E for in Vo. Pis homeomorphism anto M P(VonA) is open in U & hence open in B, It this a neighborhood of a contained in P(A). oph inE inVB (PIA) OC P(A) (A) U open due To a homeor -> B.

Ex1: Let X be any space; let i: X _____ be identity map. Men l is a covering map [of the most trivial sort] . Let E, Xx { 1, 2, ---, n}; n dis goint coupy of X then the map $\rho(X, i) = z$ for all i is also a trivial covering map. Theorem: the map $p: |R' \longrightarrow S'$ given by the equation $p(a) = (\cos 2\pi n, \sin 2\pi n)$

is a covering map.

proof. Pent time