The fundemantal Group.
Main problem: Given two topological spaces, we wont determine if they are homeomorphic or not.
What is homeomorphism?
A homeomorphism is a function $f: X \rightarrow Y(x \& y$ ore topological spaces) if f is continuous bijection and $f^{-1}: Y \rightarrow X$ is abs continuous.
Equivalently: $f: X \rightarrow Y$ is a bijection such that $f(U)$ is open iff U is open
Informal: homeomorphic spaces have the same topological properties (commented. Compactness, local compoatren, methapaility--).

- To determine if two Topological paces are homeomorphic, it is enough to construct a homeomorphism.
Othernize: It is a different matter.
So what can we do? find a topological property that holds for one space but not for the other. ex:

For some spaces, the basic topological properties are not enough to show that they are not homeamorphic.
$\Rightarrow S_{0}$, we mill introduce, the fundamental Group of a pace.
"Two peaces ane homeomoplic, then they have isomorphic fundamental group."
Homotopy.
Given two continuous functions $f g: X \rightarrow Y$ between two topological spaces, a Lomotapy from fog is a continuous function $F: X \times I \longrightarrow Y$
where $I=[0,1]$ such that,

$$
F(x, 0)=f(x)
$$

$f F(x, 1)=g(x)$ for all x.

We say f and g are homotapic. We denote it as $f \simeq g$.

- If $f \simeq g$ \& g is a constant map, then we say f is null homotopic.
- It is easy to see that \simeq is equiralane relation (easy excise).

Continuous deformation of a junction

Property: The composition of two homatopic functions by two homotopic functions are homotopic. ie

If $f, f^{\prime}: X \rightarrow Y f g, g^{\prime}: Y \longrightarrow Z$

$$
f f \simeq f^{\prime} \quad f \quad g \simeq g
$$

then $g \circ f \simeq g^{\prime} \circ f$
proof. Let $F: f \simeq f^{\prime} \& G: g \simeq g^{\prime}$
Define $H=G(H(x, t), t)$
for $t=0 ; G(H(x, 0), 0)=G(f(x), 0)$

$$
=g(f(x)) .
$$

and for $t=1$;

$$
G(H(x, 1), 1)=G\left(f^{\prime}(x, 1)=g^{\prime}\left(f^{\prime}(x)\right)\right. \text {. }
$$

Thus, H is a hountopy from $g \circ p t o g \circ f$ '.
ex: Suppose $B \subset \mathbb{R}^{n}$ mach that B is a convex set, and $f, g: X \longrightarrow B$ where X is a topological space
(it is possible for B to be not convex but the segment conecting $f(x) f g(x)$ must lies entincly in B).
In this case we can define the following homotopy between the two functions.

$$
\begin{aligned}
& H: X \times I \longrightarrow B \\
& H(X, t)=(1-t) f(x)+t g(x)
\end{aligned}
$$

we call H straight ligne homotopy between $f \mathrm{~g} \mathrm{~g}$.
(in this case all the functions to a convex set are homotopic).
Path Homatopy
Let X be a Topological space,
a path in X is a continuous function
$f:[0,1] \longrightarrow X$ such that

$$
\begin{aligned}
& f(0)=x_{0} \leftarrow \text { initial point } \\
& f(1)=x_{1} \leftarrow \text { final point. }
\end{aligned}
$$

path homotapg, two paths $f, g: I \longrightarrow X$ are said to be path homotopic if they have the same initial point x_{0} \& the some final point x_{1}, and if there is a contimuas function

$$
\begin{array}{cl}
F: I \times I \longrightarrow X \text { st } \\
F(s, 0)=f(s) & \& \\
F(0, t)=x_{0} \\
F(s, 1)=g(s) & F(1, t)=x_{1}
\end{array}
$$

for $s, t \in I$.

Fin called path homotopy and f is path homotopic to g, denoted by $f \simeq p g$ Lemma: for any point $p, q \in X \simeq p$ is an equivalence relation on the set of all paths from pto q. (Exercise).

- If f is a path, we shall denote its path homatopy equivalence class by $[f]$.
- gr the Lemma, you need only the posting hera (gluing lemma).
ex:
 $\mathbb{R}^{2}-\{0\}$ $f \simeq p g$ $\neq \not \approx 1$

Now, we will define certain operation on the classes of path homotopy.
Def (path product): Let fig: $\rightarrow X$ be two paths such that $f(1)=f(0)$. we mill define $f * g$ as:

$$
f \cdot g(s)= \begin{cases}f(20) & \text { for } 0 \leqslant s \leqslant \frac{1}{2} . \\ g(20-1) & \text { for } \frac{1}{2} \leqslant s \leqslant 1 .\end{cases}
$$

Using this operation we can induce a well defined operation on path, homatapy classes

$$
[f] *[g]=[f * g] .
$$

- Let e_{x} denotes the constant path.

$$
\begin{aligned}
e_{x}: I & \longrightarrow X \\
e_{x}(t) & =r \text { for all } t .
\end{aligned}
$$

- A path that starts and ends at the same point is called a loop.
- If f is a lop that starts fends ot $q \in X$ we say f is lased at q. (q is the lase point of f).
- $\Omega(x, q)$ will denote the set of all loops breed at q. $e_{x} \in \Omega(x, q)$.

Properties of (*)
Cl) associativity:

$$
[l] *([g] *[h])=([f] *[g]) *[h]
$$

when * is defined for the three paths.
(2) right f left identities.

If f is a path from x_{0} to x_{1}.

$$
[f] *\left[e_{x_{1}}\right]=[f]
$$

and $\left[e_{x_{0}}\right] *[f]=[f]$.
ex:

(3) Inverse.

For a path f from x_{0} to x_{1}

Define $\bar{f}: I \longrightarrow X$ to be the nevers of $f \quad \bar{f}(s)=f(1-s)$

$$
\text { so }[f] *[\eta]=\left[e_{x_{0}}\right]
$$

$$
\text { and }[\bar{f}] *[f]=\left[e_{x_{1}}\right]
$$

Let $\pi_{1}(X, q)$ be the set of path classes of loops lased at q.
Under the (*) operation; $\pi_{1}(x, q)$ is a group called the fundamental group of X.

