
FPT-Approximation for FPT Problems

Hussein Houdrouge

houdrouge.hussein@gmail.com

April 2023

In the NP class, some problems are known to be NP-hard, and most likely, there is no polynomial time

algorithm that decides them. Therefore, under this assumption, approximation algorithms were designed

to run in polynomial time. As their name suggests, these algorithms can only guarantee an approximate

solution within some factor, ideally a small constant. Another approach to deal with NP-complete problems

is to design exact algorithms whose run-time is exponentially in a parameter different than the size of the

problem. This type of algorithm is called a fixed-parameter tractable algorithm. The authors of [LMR+]

combine the two worlds and present several techniques to develop FPT approximation algorithms for FPT

problem with better approximation guarantee than the polynomial algorithms. In other words, they designed

approximation algorithms whose run times are exponential in a parameter different than the problem size,

run faster than the best known FPT algorithm for the problems of interest in [LMR+], and provide better

approximation than the polynomial approximation algorithm. Thus, in the remaining of this document, we

give an introduction to the FPT world and present the new technique in [LMR+].

We first start by giving some preliminaries in Section 1, then we proceed to Section 2 to present common

techniques in the design of fixed parameter algorithms. Lastly, we present an FPT -approximation algorithm

for Subset Feedback Vertex Set in a directed graph. An experienced reader in the design of FPT -algorithm

may start immediately from Section 3.

1 Preliminaries

In the remaining of this work, a graph G = (V,E) stands for a simple undirected graph. A digraph D = (V,A)

stands for a directed graph, we usually refer to a directed edge by an arc.

The formal definition of a parameterized problem and a parameterized algorithm is the following.

Definition 1.1. (Parameterised Problem [CFK+15]) A parameterized problem is a language L ⊆ Σ∗ × N,

where Σ is a fixed finite alphabet. For an instance (x, k) ∈ Σ∗ × N, k is called the parameter.

Example 1 (Vertex Cover).

Input: a graph G = (V,E), a parameter k.

Output: Yes, if there is a V ′ ⊆ V of size at most k such that every edge {u, v} ∈ E either u ∈ V ′ or v ∈ V ′.

Otherwise, no.

In Example 1, the pair (G, k) belongs to the language of parameterised vertex cover if and only if G

encodes an undirected graph in the alphabet Σ and G has a vertex cover of size k. In this case, we call k, a

natural parameter. However, the parameter is not necessarily the size of the set in question. For example,

it can be the tree-width of a graph.

1

houdrouge.hussein@gmail.com

Definition 1.2 (FPT problem [CFK+15]). A parameterized problem L ⊆ Σ∗×N is fixed parameter tractable

(FPT) if there is an algorithm A (called a fixed parameter algorithm) that decides if an instance (x, k) ∈
Σ∗ × N is in L in time bounded by f(k).|(x, k)|O(1), where f : N −→ N is a computable function.

Moreover, we call FPT the class of all problems that admit a fixed parameter algorithm.

Since approximation algorithms are concerned with optimisation problems, we introduce the following

definition.

Definition 1.3 (NP -optimisation problem). An NP -optimisation problem is a tuple (I, sol, cost, goal). I

denotes the set of instances. For an instance x ∈ I, sol(x) is the set of feasible solutions for x, the length of

each y ∈ sol(x) is polynomially bounded in |x|, it can be decided in polynomial time in x whether y ∈ sol(x)

holds for a given x and y. Given an instance x and a feasible solution y, cost(x, y) is a polynomial time

computable positive integer. The goal is either min or max .

Example 2. The vertex cover optimisation problem can be described as (I, sol, cost,min). In this case, I

will be the set of all graphs. For a graph x ∈ I, the sol(x) is all subset of V (G) that covers E(G). For

y ∈ sol(x) is bounded by |V (G)|, It is possible to verify that y is a solution in polynomial time by checking

that every vertex has an endpoint in y. Cost(x, y) is the number of vertices in y. The goal is to find

miny∈sol(x) cost(x, y).

Next, we define what is an FPT−approximation Algorithm.

Definition 1.4 (FPT-approximation Algorithm). Let X = (I, sol, cost, goal) be a minimisation problem.

A standard factor c(k) FPT -approximation algorithm for X (where the parameterization is by solution size

or value) is an algorithm that takes an input (x, k) satisfying opt(x) ≤ k. Then, it runs in time f(k) · |x|O(1)

to compute a y ∈ sol(x) such that cost(x, y) ≤ k.c(k). For inputs not satisfying opt(x) ≤ k, the output can

be arbitrary.

An analogous definition can be drawn for a maximisation problem.

2 Some Techniques for Designing FPT-Algorithms

In this section, we present techniques to mainly design FPT -algorithms. These techniques will be also used

to design FPT -approximation algorithms in Section 3.

2.1 Branching

We begin with a very well known technique, branching (or bounded search tree). Informally, we try to build

a solution for a given problem by taking a sequence of decisions such as including a vertex in a solution or

not.

We will illustrates this techniques on the vertex cover problem introduced in Example 1. We start by

the following observation.

Observation 1. Suppose V ′ ⊆ V is a solution for the vertex cover problem. Then, for every edge e =

{u, v} ∈ E(G), either u ∈ V ′ or v ∈ V ′.

Given this observation, we can design the following branching algorithm that take a graph G and an a

positive integer k, then returns true if there is a vertex cover of size k, otherwise it returns false.

Algorithm 1: VertexCover(G, k).

2

1. if G has no edges then return true

2. if k = 0 then return false

3. let e = {uv} ∈ E(G)

4. return VertexCover(G− u, k − 1) or VertexCover(G− v, k − 1)

It is straightforward to show the correctness of this algorithm using Observation 1. In addition, it is easy

to see that after k steps the algorithm halts. The execution tree of this algorithm is a binary tree with 2k

leaves. Therefore, the run-time of Algorithm 1 is 2knO(1).

2.2 Iterative Compression

The idea behind iterative compression is to start from a given solution for the problem at hand, then try to

exploit the knowledge gained from this solution to obtain a smaller one.

Consider the vertex cover problem again, suppose using an approximation algorithm we get a solution

W of size at most 2k for some k. Suppose, we want to find a solution Z of size at most k. Z might contains

element from W or not. This observation leads to the following problem that we will call VertexCover-

Compression.

Definition 2.1 (VertexCover-Compression).

Input: a graph G, a solution W of size at most 2k, and a positive integer k.

Output: a solution S of size at most k.

Notice, if 2k < |W |, then we can conclude that there is no instance. As noted before a solution Z might

be constituted of F ⊆ W and X ⊆ V such that X ∩ (W − F) = ϕ. Suppose we can guess F in FPT -time,

then what remains is to find X disjoint from W − F . This problem can be defined as follow.

Definition 2.2 (VertexCover-Disjoint).

Input: a graph G, a solution W of size at most 2k, F ⊆W , and a positive integer k.

Output: A solution S for G− F disjoint from W − F such that |S ∪ F | ≤ K.

To solve the last problem, observe that the set W − F cannot have an edge between its vertices i.e. it is

an independent set. Otherwise, any disjoint vertex cover will miss this edge. Therefore, we can assume that

W − F is an independent set, then N(W − F) is a disjoint solution, then if F ∪N(W − F) has size at most

k then we are done. Given this algorithm for the disjoint vertex cover problem we can solve the compression

version as follows.

Algorithm 2: VertexCover-Compression.

1. Branch on all the subset F of W .

2. Solve Disjoint problem on G− F given W − F .

3. Return the solution if it exists.

3

The run-time for Algorithm 2 is 2|W |nO(1) ≤ 4knO(1). This algorithm is slightly worst than the previous

one because we started with a large solution W . However, the iterative part of the iterative compression

method provides us with a mechanism to start with a solution of size at most k + 1.

The main idea is to build the instance of the problem iteratively in order to obtain a solution of size at

most k + 1 and maintain a smaller solution at each step by applying the compression procedure.

Consider an arbitrary sequence of the vertices of G v1, ..., vn, and let Gi = G[{v1, ..., vi}]. The iterative

compression algorithm is described as follows.

Algorithm 3: VertexCover Iterative Compression.

1. S = {v1}

2. For i = 1 to n.

(a) S = VertexCover-Compression(Gi, S, k)

(b) if S > k return NO. Otherwise set S = S ∪ {vi+1} and proceed to the next iteration.

Notice that we can terminated as quickly as we find a no instance Gi for some i because if a subgraph

requires a vertex cover larger than k then G has a larger vertex cover.

To summarize the run-time of the iterative compression, we provide the following remark as in [CFK+15].

Remark 1.

• If there exists an algorithm solving (∗)-Compression in time f(k) · nc, then there exists an algorithm

solving problem (∗) in time O(f(k) · nc+1).

• If there exists an algorithm solving Disjoint-(∗) in time g(k) · nO(1) , then there exists an algorithm

solving (∗)-Compression in time
k∑

i=0

(
k + 1

i

)
g(k − i)nO(1).

In particular, if g(k) = αk , then (*)-Compression can be solved in time (1 + α)k · nO(1).

2.3 Important Separators/Cuts

In this section, we will present another techniques that is used in designing FPT -algorithms for problems

such as Multiway Cut and Feedback Vertex Set [CFK+15]. We start by giving the essential definition in an

undirected graph.

Definition 2.3 (Important Separators). An (X,Y)−separator δ(R) is important if there is no (X,Y)-

separator δ(R′) with R ⊂ R′ (Cover) and |δ(R′)| ≤ |δ(R)| (if both condition applies we say δ(R′) dominates

δ(R)).

An important theorem that can be exploit to design FPT -algorithms is the following one.

Theorem 2.1. There are at most 4k important (X,Y)-separators of size at most k.

This bound is essentially tight due to the example in Figure 2.

Now, we proceed to illustrate an FPT -algorithm based on the important separator technique. First, we

introduce the problem of Multiway Cut.

4

Figure 1: The blue edges are important separator of size 4, while the red edges are separator but not

important [DML].

Figure 2: A graph with θ(4k/k3/2) important (X,Y)-cuts of size k: every full binary sub-tree with k leaves

gives rise to an important (X,Y)-cut of size k [CFK+15].

Definition 2.4 (Multiway Cut).

Input: A graph G = (V,E), a set T ⊆ V of terminals, and an integer k.

Output: A set S ⊆ E of size at most k such that each connected component of G− S contains at most one

t ∈ T .

In order to solve the Multiway Cut problem, we need the following lemma.

Lemma 2.2 (Pushing lemma [DML]). Let t ∈ T . The Multiway Cut problem has a solution S that contains

an important (t, T − t)-separator.

The proof of this lemma is straightforward and it can be find in [DML]. Now, using Theorem 2.1, Lemma

2.2, and the branching technique, we can develop the following FPT -algorithm.

Algorithm 4: Multiway Cut:

• Choose a t, while t is not alone in a component.

• Enumerate all the important (t, T − t)-separators.

• Branch on a separator S of size at most k, set k = k − |S|, and repeat for another t ∈ T .

After giving a brief overview on important separator in undirected graph, we introduce analogous defini-

tion for important separator in digraph. Then, we will illustrate the use of such separators in the design of

FPT−approximation algorithm in Section 3. For FPT -algorithms in digraph we refer the reader to Chapter

8.5 in [CFK+15].

5

Definition 2.5. (Separators in Digraph) A minimal vertex set S disjoint from X ∪ Y is called an X − Y

separator if there is no X − Y path in D − S. Note S is minimal if no strict subset of S is also an X − Y

separator.

Given a set X and separator S as in the above definition, we will denote by RD(X,S) the set of vertices

reachable from vertices of X via directed path in D− S. We will also denote NRD(X,S) the set of vertices

not reachable from vertices of X in D − S.

Definition 2.6 (Covering and Dominating). Let S1, S2 be X−Y separators. We say S2 covers S1 (denoted

by S1 ⊑ S2) if R(X,S1) ⊆ R(X,S2). We say S2 dominates S1 (denoted S1 ≼ S2) if S2 covers S1 and

|S2| ≤ |S1|.

We present the following observation about the separators in a digraph that will be a key element in

proving several lemmas in the next section.

Observation 2. Let S1 and S2 be minimal X−Y separators such that S1 ⊑ S2. Then, S2−S1 ⊆ NR(X,S1).

Similarly Y ⊆ NR(S1 − S2, S2).

Finally, we give the definition of important separator in a digraph.

Definition 2.7. (Important Separators) Let S be a minimal X − Y separator.

• S is important X − Y separator closest to Y , if there is no X − Y separator S′ such that S ≼ S′.

• S is important X − Y separator closest to X, if there is no X − Y separator S′ such that S′ ≼ S.

3 FPT-approximation Algorithms

In the proceeding, we introduce a technique called two-extremal separator technique using in the approx-

imation of FPT -problems. This technique is initiated in [LMR+]. It is applied on problems classified as

F-transveral.

Definition 3.1 (F-transveral set). Let F = {F1, F2, ..., Fq} be a fixed set of sub-graphs of a digraph D such

that F-free sub-graphs of D are closed under taking sub-graphs. An F-transveral in D is a set of vertices

that intersects every Fi ∈ F .

The goal in an F-transveral problem is to compute the minimum F−transveral set. The following is an

example of an F-transveral problem.

Example 3 (Feedback Vertex Set). Let F be the set of all directed cycle in a digraph D. Then, the feedback

vertex set is S ⊆ V (D) such that every directed cycle has a non-empty intersection with S.

Another example of F-transveral problem is the Subset Feedback Vertex Set. Next, we will present the

definition of this problem, and later we present an FPT -approximation algorithm.

Definition 3.2 (T -walk and T -cycle). Let D = (V (D), A(D)) be a directed graph. A directed closed walk

in D is an alternating sequence of vertices and arcs that starts and end on the same vertex. For a set

T ⊆ V (D) ∪ A(D), a directed closed walk in D is said to be a T -closed walk if it contains an element from

T . A T -closed walk is called a T -cycle if it is a simple cycle.

Definition 3.3 (T -sfvs (Subset Feedback Vertex Set)). A set S ⊆ V (D) is called a T −sfvs if it is intersects

every T -cycle in D for a given T ⊆ A(D) ∪ V (D).

6

Thus, the goal in the Directed Subset Feedback Vertex Set is to compute a T − sfvs of minimum size.

The following lemma will be crucial in the design on approximation algorithm for F-transveral problems.

Lemma 3.1. Let S̃ be an F-transveral in D. Let W = W1⊎W2 be an F-transveral in D such that for some

ϕ ̸= S ⊆ S̃, S is a minimal W1 −W2 separator. Let Xpre and Xpost be W1 −W2 separator in D such that

Xpre ⊑ S ⊆ Xpost. Then S̃ − S is an F-transveral in the graph D′ = D − (Xpre ∪Xpost).

Proof. Suppose there is a graph F ∈ F such that S̃ − S does not intersect D′. Consider the graph D′′ =

D′ − (S̃ − S), since both W and S are F-transveral sets, and since F is assumed to be strongly connected,

then there is a directed walk in F that intersects S and W1, or S and W2. Using observation 2, S is not

reachable from W1 which implies a contradiction. The other cases are analogous.

Using the previous lemma, we can deduce the following one.

Lemma 3.2. Let D,W1,W2, S̃, S be as defined in the previous lemma. Then, there exists an important

W1 −W2 separator closest to W1 of size at most |S|, call it Xpre, and an important W1 −W2 separator

closest to W2 of size at most |S|, call it Xpost, such that S̃ − S is an important F-transversal in D′ =

D − (Xpre ∪Xpost).

Now, we are ready to prove the following theorem by providing the necessary algorithms.

Theorem 3.3 ([LMR+]). There is a factor-2 FPT-approximation algorithm for Subset DFVS with running

time 2O(k)nO(1).

In order to give an algorithm for subset DFVS, first we give an algorithm for a special case. We call this

special case Strict DFVS, and it is defined as follow.

Definition 3.4. [LMR+] A factor-c FPT-approximation algorithm for Strict Subset DFVS in an algorithm

take the input: (D,T,W, k). D = (V (D), A(D)) denotes a directed graph, T ⊆ A(D), W ⊆ V (D) is T -sfvs

in D, and k ∈ N. The output is a T -sfvs set in time f(k).nO(1) of size at most c · k, if there is a T -sfvs S

of size at most k, and W is contained in a unique strongly connected component of D − S. Otherwise, the

output can be arbitrary.

Lemma 3.4 ([LMR+]). There is a factor-1 FPT-approximation algorithm for Strict Subset DFVS with

running time 2O(k)nO(1). We call this algorithm Alg-Strict-SFVS.

3.1 Proof of Lemma 3.4 [LMR+]

Let I = (D,T,W, k) be the given input. Suppose (u, v) ∈ T such that u, v ∈ W , then the algorithm

terminates with arbitrary output. S will break every cycle contains (u, v). Thus W will not be in a strongly

connected component. Now, we construct a new tuple I ′ = (D′, T ′, w, k) where D′ is obtained from D by

identifying the vertices in W and T ′ is adjusted accordingly. w is the new vertex created in place of W .

Lemma 3.5. The following statements hold.

1. w is a T -sfvs in D′

2. Every T -sfvs S in D that is disjoint from W such that W is contained in a unique strongly connected

component of D − S, is a T ′-sfvs in D′ that is disjoint from w.

3. Conversely, every T ′-sfvs in D′ disjoint from w is a T -sfvs in D.

7

Therefore, it is sufficient to give an algorithm for I ′. But first we need the following lemma to complete

the design of our algorithm.

Lemma 3.6. Let S be a solution for I ′. For every (u, v) ∈ T ′, either {u, v} ∩ S ̸= ϕ or there is a solution

for I ′ that contains an important x− w separator closest to w for some x ∈ {u, v}.

Proof. Suppose S is a T ′-sfvs in D′ of size at most k. We have S disjoint from w, and w lies in a strongly

connected component C.

For every e = {u, v} ∈ T ′, e cannot be in C because S will break all the cycle of C, e is an element of

every cycle in C, therefore C will be no longer a strongly connected component.

This implies that either at least one of u or v is contained in S or S intersects all w − x or x− w paths

for some x ∈ {u, v}.
Now, we will prove that if S intersects all w − x or x − w paths for some x ∈ {u, v}, then there is a

solution S′ that contains an important w− x separator closest to w or an important x−w separator closest

to w for some x ∈ {u, v}.
Consider the case when S intersects all w − x paths for some x ∈ {u, v}. The other case is similar. Let

Ŝ ⊆ S be minimal w − x separator in D′. Now, consider an important w − x separator S̃ of size at most at

most |Ŝ| that is covered by Ŝ. We claim that (S − Ŝ) ∪ S̃ is a solution for I ′. If it is not the case, then we

can find a contradiction using Observation 2.

Using Lemma 3.6 and 3.5 we can design the following algorithm for the Strict Subset DFVS.

Algorithm 5: Strict DFVS.

Recursively apply: for an arc e = (u, v) ∈ T

• Branch 1: add u to S, set k = k − 1.

• Branch 2: add v to S ...

• Branch 3: Enumerate all important u− w separator closest to w of size at most k.

• Branch 4: Enumerate all v − w separators closest to w of size at most k.

• Branch 5: Enumerate all w − u closest to w of size at most k.

• Branch 6: Enumerate all w − v closest to w of size at most k.

Analysing the run-time for Algorithm 5, we get the following time complexity (10 + 4
√

6)knO(1).

3.2 Proof of Theorem 3.3 [LMR+]

We will make use of the following lemma.

Lemma 3.7. Let D be a digraph, T ⊆ A(D), and let W and S be disjoint T -sfvs in D. Let ϕ ̸= W ′ ⊆ W

be such that in D − S, there is a strongly connected component whose intersection with W is precisely W ′.

Consider the graph D′ obtained from D by adding a bi-directed clique on W ′ (i.e., we add an arc (w,w′) for

every w,w′ ∈W ′ such that (w,w′) /∈ A(D)). Then, W and S are both T -sfvs in D′.

The algorithm follows the paradigm of Iterative Compression discussed in section 2.2.

Algorithm 6: Iterative-Compression-Subset DFVS.

8

1. V (D) = {v1, ..., vn}, Vi = ∪ij=1vj for i ∈ [n].

2. For X ⊆ V (D), let T [X] = {(x, y) ∈ T |x, y ∈ X}.

3. W1 = {v1}.

4. For i = 1 to n:

(a) Ii = (D[Vi], T [Vi],Wi, k)

(b) S = Alg-Compression-SFVS(Ii).

(c) Wi+1 := {vi+1} ∪ S

The Alg-Compression-SFVS sub-routine is sepecified as follow.

Definition 3.5 (Alg-Compression-SFVS).

Input: (D,T,W, k). D is digraph, T ⊆ A(D), W is a solution of size at most 2k + 1, and k is a positive

integer.

Output: if there is a T -sfvs S in D of size at most k that is not necessarily disjoint from W then it outputs

a T -sfvs in D of size at most 2k in 2O(k+|W |)nO(1).

As discussed in Section 2.2. we have to specify the disjoint problem in order to solve the compression

problem.

Definition 3.6 (Alg-Disjoint-SFVS).

Input: (D,T,W, k). D is digraph, T ⊆ A(D), W is a solution of size at most 2k + 1, and k is a positive

integer.

Output: if there is a T -sfvs S in D of size at most k that is disjoint from W , then it outputs a T -sfvs in D

of size at most 2k in 2O(k+|w|)nO(1).

Now, the main task is to design an algorithm for the disjoint Subset DFVS. We start by specifying the

base case. If k ≤ 1 or |W | = 1, we can solve the problem by brute force. If k ≤ 1, it is sufficient to check

whether there is a T -cycle in D and if yes, whether there is a T -sfvs in D of size at most 1. If k > 1, |W | = 1,

then we can simply return W .

In order to describe the recursive case, we introduce the following definitions and notations.

Definition 3.7. relD(X,Y) the set of all vertices that lie in a strongly connected component of D − Y

intersected by X.

Definition 3.8. Let P be the set of all 3-partitions of W into (X,Y, Z). For every τ = (X,Y, Z) ∈ P, we

define the following tuples. Let 1 ≤ i, j ≤ k.

• Li[Z −→ XY] denotes the set of all important Z −X ∪ Y separators of size at most i closest X ∪ Y .

• Li[XY ←− Z] denotes the set of all important Z −X ∪ Y separators of size at most i closest to Z.

For 1 ≤ i, j ≤ k, let L1 ∈ Lj [Z −→ XY] and L2 ∈ Lj [XY ←− Z].

• Li[Y −→ X,L1, L2] denotes the set of all important Y −X separators of size at most i closest to X in

D − (L1 ∪ L2).

9

• Li[X ←− Y, L1, L2] denotes the set of all important Y −X separators of size at most i closest to Y in

D − (L1 ∪ L2).

Moreover, we will use the following notation for the input. For Q ⊆ V (D) :

• I[Q,Z, i] denotes the tuple (D[rel(Z,Q)], T, Z, i).

• I[Q,XY, i] denotes (D[rel(X ∪ Y), Q], T,X ∪ Y, i).

• I[Q,X, i] denotes (D[rel(X,Q)], T,X, i).

• Ĩ[Q,Y, i] denotes (D′, T, Y, i), where D′ is the graph obtained from D[rel(Y,Q)] by adding a bi-directed

clique on Y .

Now, we are ready to describe the remaining of the algorithm.

Algorithm 7: Alg-Disjoint-SFVS.

1. For every (X,Y, Z) ∈ P such that:

• |W |/3 ≤ |X ∪ Y | and |Z| ≤ 2|W |/3.

• |Y | > |W |/3.

1.1 For every 1 ≤ i1 ≤ k, and for every i2 such that k1 = i1 + i2 ≤ k:

• Step 1 Guess:

– L1 ∈ Li1 [Z −→ XY].

– L2 ∈ Li1 [XY ←− Z].

– L3 ∈ Li2 [Y −→ X,L1, L2].

– L4 ∈ Li2 [X ←− Y,L1, L2].

– Set Q = ∪q∈[4]Lq

• Step 2: If |W |/3 ≤ |X ∪ Y |, |Z| ≤ 2|W |/3, then:

For every i3 + i4 ≤ k − k1 :

(a) Sz = Alg-Dijoint-SFVS(I[Q,Z, i3])

(b) SXY = Alg-Disjoint-SFVS(I[Q,XY, i4]).

(c) ∆ = Q ∪ SZ ∪ SXY is a T -sfvs in D of size at most 2k, then we return ∆.

• Step 3: if step 2 does not apply and Y > |W |/3, then:

for every i3, i4, i5 such that i3 + i4 + i5 = k − k1

(a) Sz = Alg-Dijoint-SFVS(I[Q,Z, i3]).

(b) SX = Alg-Dijoint-SFVS(I[Q,X, i4]).

(c) SY = Alg-Strict-SFVS(Ĩ[Q,Y, i5]).

(d) if ∆ = Q ∪ SZ ∪ SX ∪ SY is a T -sfvs in D of size at most 2k, then return ∆.

Now, we give the proof of correctness of the algorithm.

10

Proof. The correctness is proved by induction on |W |. The base case |W | = 1, in which case, the algorithm

works on brute force and hence it is correct. Assume |W | > 1, suppose there is a T -sfvs S of size at most k

in D Disjoint from W . We aim to show that the algorithm output a T -sfvs of size at most 2k.

Let (M1, ...,Mr) denote the partition on W such that each Mi is contained in a strongly connected

component of D− S, and for every ℓ1 > ℓ2, there is no path in D− S from relD(Mℓ1 , S) to relD(Mℓ2,S). In

other words, S is an Mℓ1 −Mℓ2 separator for every ℓ1 > ℓ2.

Now, we will consider how W breaks after removing S.

Case 1: |Mℓ| ≤ |W |
3 for every ℓ ∈ [r]. Let ℓ′ ∈ [r] denote the least value such that |w|/3 <

∑ℓ′

i=1 |Mi|.
Then,

|W |
3

<

ℓ′∑
i=1

|Mi| ≤
2|W |

3
.

Define X = ϕ, Y = ∪ℓ′i=1Mi, and Z = ∪rℓ′+1Mi. Therefore, we have

|W |
3
≤ |X ∪ Y |, |Z| ≤ 2|W |

3
.

Then, when considering the partition (X,Y, Z), step 2 would have been executed.

Let S1 be a minimal subset of S that intersects all the Z −X ∪ Y paths in D. Let i1 = |S1|. Since D is

strongly connected component it follows that i1 > 0 by the two extremal separator lemma (Lemma 3.1 and

3.2), L1 ∈ Li1 [Z −→ XY] and L2 ∈ Li2 [XY −→ Z] such that S′ = S − S1 is a T -sfvs in D − (L1 ∪ L2). Let

i2 = 0 that implies L3 = L4 = ϕ. We have Q = ∪q∈[4]Lq, define:

• S′
z = S′ ∩ rel(Z,Q), i3 = |S′

Z |.

• S′
XY = S′ ∩ rel(X ∪ Y,Q), i4 = |S′

XY |.

By induction hypothesis we get a solution of size at most 2i3 + 2i4. Combining all solutions we get one of

size at most 2i1 + 2i3 + 2i4 ≤ 2k.

Case 2: There is ℓ∗ ∈ [r] such that |Mℓ∗ | > |W |
3 . Define Y = Mℓ∗ . If ℓ∗ = 1, then define X = ϕ. If

ℓ∗ = r, then define Z = ϕ. Otherwise, X = ∪ℓ
∗−1
i=1 Mi, and Z = ∪ri=ℓ∗+1Mi. Then, the conditions of step 3

are satisfied, and step 3 will be executed.

As before suppose S1 is a minimal subset of S that intersects all Z −X ∪ Y paths in D. Let i1 = |S1|,
by lemma 3.1 and 3.2, we have L1 ∈ Li1 [Z −→ XY] and L2 ∈ Li1 [XY ←− Z] such that S′ = S − S1 is a

T -sfvs in D − (L1 ∪ L2).

Now, let S2 be a minimal subset of S′ that intersects all Y −X paths in D−(L1∪L2). Let i2 = |S2|. Then,

Lemma 3.1 and 3.2 guarantees that there exists L3 ∈ Li2 [Y −→ X,L1, L2] and L4 ∈ Li2 [X ←− Y, L1, L2]

such that S′′ = S′ − S2 is a T -sfvs in D − ∪q∈[4] Lq. Define Q = ∪q∈[4]Lq, and

• S′′
Z = S′′ ∩ rel(Z,Q), i3 = |S′′

Z |.

• S′′
X = S′′ ∩ rel(X,Q), i4 = |S′′

X .

• S′′
Y = S′′ ∩ rel(Y,Q), i5 = |S′′

Y |.

We have S′′
Z is a T -sfvs of size at most i3 in D[rel(Z,Q)], S′′

X is a T -sfvs of size at most i4 in D[rel(X,Q)].

Using Lemma 3.7, we have S′′
Y and Y are both T -sfvs in D′ where D′ is the graph by adding a bi-directed

clique on Y in D[rel(Y,Q)]. Therefore, using the induction hypotheses and the correctness of the algorithm

Alg-Strict-DFVS, we obtain SZ of size at most 2i3, SX of size at most 2i4, and SY of size i5. In sum,

Q ∪ SX ∪ SY ∪ SZ is a T -sfvs in D of size at most 2(i1 + i2 + i3 + i4 + i5) ≤ 2|S| ≤ 2k.

11

Proving the run-time requires solving the following recurrence. Let T (k, r) denotes the number of leaves

generated by the instance (D,T,W, k) where r = |W |. Then,

T (k, r) ≤ 3r
k∑

k1=1

25k1 · 2
∑

k2+k3≤k−k1

T (k2, ⌊2r/3⌋) + T (K3, ⌊2r/3⌋).

and T (1, r) = 1, T (k, 1) = 1. This complete the proof of Theorem 3.3

4 Conclusion

In this project, we presented some of the techniques used in FPT -algorithm. Then, we introducing the

subject of FPT -approximation algorithm. Section 3 explains the two-extremal separator techniques used

in [LMR+] to design approximation algorithm. It illustrates the use of this techniques on the problem of

Subset Feedback Vertex Set in directed graphs. However, this techniques is applied to other problems such as

Directed Odd Cycle Transversal and Bi-directed Multicut. In addition, [LMR+] leaves some open problems

in this fields such as: is there a constant FPT -approximation for Planar Vertex Deletion or Chordal Vertex

Deletion parameterised by the solution size that run in 2O(k)nO(1).

12

References

[CFK+15] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, and

S. Saurabh. Parameterized Algorithms. Springer International Publishing, 2015.

[DML] Fixed parameter algorithms. http://cs.bme.hu/~dmarx/papers/marx-warsaw-fpt1.

[LMR+] Daniel Lokshtanov, Pranabendu Misra, M. S. Ramanujan, Saket Saurabh, and Meirav Zehavi.

FPT-approximation for FPT Problems, pages 199–218.

13

http://cs.bme.hu/~dmarx/papers/marx-warsaw-fpt1

	Preliminaries
	Some Techniques for Designing FPT-Algorithms
	Branching
	Iterative Compression
	Important Separators/Cuts

	FPT-approximation Algorithms
	Proof of Lemma 3.4 doi:10.1137/1.9781611976465.14
	Proof of Theorem 3.3 doi:10.1137/1.9781611976465.14

	Conclusion

