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1 Introduction

A binary search tree, BST for short, is one of the most fundamental data structures. Al-

though BST is a very simple data structure, the most fundamental question about it remains

unsolved, what is the best BST?

In the remaining of the introduction, we will recall the properties of BST , then introduce

the problem of dynamic optimally. However, The reader who is familiar with the subject

can start from Section 3 where we discuss the model of computation of a BST . After, in

Section 4, we discuss a lower bound on the run-time of any BST . We proceed to present

Tango Tree in Section 5. Finally, we present a geometric equivalence for BST .

1.1 Binary Search Tree

We will borrow the recursive definition of a tree from [Knu97]. A tree is a finite set T of one

or more nodes such that

1. There is one special node that is called the root, denoted by root(T ).

2. The set T\root(T ) are portioned into m ≥ 0 disjoint sets T1, T2, ..., Tm where every Ti

is a tree. They are called the sub-trees of the root.

A binary tree is a tree where the root has at most two sub-trees. One sub-tree is called

the left sub-tree of the root, the other one is called the right sub-tree. If a sub-tree is not

existing, we will denoted by Nil. A leaf is a sub-tree that consists of only one node. The

height of the tree is defined as the length of the longest path from the root to a leaf. In

addition, each node stores a key value. These keys are chosen from a totally ordered set,

and they satisfy the following property.

The binary-search-tree property [Cor09]: Let x be a node of a binary search tree.

If y is a node in the left sub-tree of x then the key of y is smaller than or equal to the key of
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x. If y is a node in a node in right sub-tree of x, then the key of y is greater than or equal

to the key of x.

The main purpose of this BST is to perform efficiently one of the following operations:

insertion, deletion, and searching. These operations are performed by comparing the element

in the query by root of a tree, the by the above property decide to move to the left or right sub-

tree. Then, apply the same procedure recursively till hitting the desired target. More details

on the standard implementation can be found in [Cor09]. However, these operation may

alter the shape of the tree which will lead to increase in the height of the tree. Consequently,

the time taken to perform these operations will increase too. Thus, the main challenge is to

perform these operation optimally while keeping the shape of the tree ”optimal”. For these

reasons, several implementation has been developed, some are briefly mentioned in Section 2.

One of these implementations is Red-Black tree that performs these operations in O(log n)

[Cor09]. This result is followed from the following lemma.

Lemma 1.1 ([Cor09]). A red black tree with n nodes has height at most 2 log(n+ 1).

1.2 Dynamic Optimality

The main objective is to solve the following problem as efficiently as possible.

Problem 1: Given a BST data structure over a set of static keys from 1 to n. The BST

will only performs successful search operations i.e. search for elements stored in the BST .

input: A sequence of of keys S = ⟨k1, ..., km⟩ where each ki ∈ {1, ..., n}. We call S an access

sequence.

Output: a sequence of pointers P = ⟨p1, ..., pm⟩ where pi points to the node where ki is

stored.

More precisely, we want to solve Problem 1 in an online setting i.e using an online BST .

An online BST does not have an access for the entire sequence at the start of the search. It

can only make use of the data that already stored in the BST . But it has the freedom to

augment each node with additional data that should be as small as possible [DHIP07].

Given an access sequence S, OPT (S) will denote the number of unit-cost operations

performed by the fastest BST that executes S according to a fixed BST model described

Section 3. This BST can be offline, i.e. it has access to the entire sequence before doing the

searches. One may assume that this BST starts from the best possible BST , as converting

one BST to another through rotation operation can be performed in linear time. This
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additional cost will add only a constant factor to OPT (S) assuming m ≥ cn for large n.

[DHIP07] [STT86].

An online BST is c-competitive if it executes any sequence S in c×OPT (S). We say an

online BST is dynamically optimal if c is a constant. By Lemma 1.1, the Red-Black tree can

solve Problem 1 in O(|S| log n) since OPT (S) ≥ |S| for all S. Thus, Red-Black tree is log n-

competitive. The Tango Tree, described in Section 5 is O(log log n)-competitive. However,

the question whether there is a dynamically optimal BST is still open. It is conjectured that

splay tree of [STT86] is dynamically optimal but no proof has been given yet.

2 BST Variations

There are many variations of BST. They mainly differ in the way of restructuring the tree

after adding, deleting, and searching for an element. The main tool used in this restructuring

is called node rotations as Figure 1 shows.

Figure 1: Left and right rotation.

In this section, we will briefly discuss three variations: Treap, Red-Black Tree, and Splay

Tree.

2.1 Treap

Given a set of keys, that we want to store in a BST . Each key will be associated with a

priority p. The priority could be drawn randomly or associated in a deterministic way. The

Treap is a binary search tree of the keys i.e. the keys satisfies the binary-search-property,

and a binary heap over the priorities (it could a min heap or max heap). A min binary heap

is a binary tree where the priority of the parent is at most the priority of its children. For

additional details, the reader can consult Chapter 7 of [Mor].
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Figure 2: An example of red-black tree, the grey nodes are the red one. [Cor09].

2.2 Red-Black Tree

The Red-Black Tree is another binary search tree that assigns to each node a color (red or

black). Beside, the binary-search-tree property it has to satisfy the following ones, known

as the red-black tree properties.

1. Each node is either red or black.

2. The root is colored black.

3. The leaves are denoted by Nil and black colored.

4. The children of a red node are black.

5. For every node, the paths to its leaves contain same number of black nodes.

The details and the implementation of the tree can be found in [Cor09] Chapter 13.

2.3 Splay Tree

Splay tree is introduced in [ST83]. It is a binary search tree that equipped with several

operations to do some adjustments. The main operation is splay that bring a node to the

root. The splay is composed of several operations such as zig, zig-zig, zig-zag, zag-zag ...

Figure 3 illustrates some of these operations that are combination/renaming of left and right

rotation.

The Splay Tree was conjectured to be dynamically optimal but no proof has given so far.
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(a) (b)

Figure 3: (a) Zig-Zig Operation (Source: Wikipedia), (b) Zig-Zag Operation (Source:

Wikipedia).

3 BST’s Model of Computation

In this section, we will define the model that abstract and limit the behaviour of a binary

search tree.

Definition 3.1. (Tree Reconfiguration, [DHI+09]) Let T1 be a BST , and τ be a sub-tree

of T1 containing its root. Further, let τ ′ be a BST on the nodes of τ . We will define the

operation τ −→ τ ′ as changing T1 to T2 where T2 is identical to T1 except that τ is replaced

by τ ′. The cost of this reconfiguration is |τ | = |τ ′|.

Definition 3.2 (BST Model, [DHI+09]). Let S = ⟨s1, s2, ..., sm⟩ be a search sequence. Given

any BST algorithm A, an execution of A is a sequence of reconfiguration applied to an initial

tree T0 denoted by E = ⟨T0, τ1 −→ τ ′1, τ2 −→ τ ′2, ..., τm −→ τ ′m⟩ such that si ∈ τi for any i

and each reconfiguration is valid. We will define Ti to be the resulted tree from applying the

reconfiguration τi −→ τ ′i on Ti−1. The cost of E is
∑m

i=1 |τi|.

Indeed, other BST models exist which are constant factor-equivalent. For instance, we

can define a BST data structure by an algorithm for queering a key ki [DHIP07]. The BST

access algorithm will have one pointer to a single node in the tree. At the start of the

query for ki, the pointer is initialised to the root. The algorithm can perform one or several

operations from the followings.

1. Move pointer to the left child.

2. Move pointer to right child.

3. Move the pointers to its parent.

4. Perform a single rotation on the pointer and its parent.
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Whenever a pointer moves from a node to another or initialised to a new one, we say that

the node is touched. The execution time of a BST on an access sequence S, is the number

of operation performed. Clearly, the number of touched node is a lower bound which is also

bounded by the number of elements in S.

4 The Interleave Lower Bound

In this section, we will discuss a lower bounds on OPT (S) where S is an access sequence.

More precisely, we will state a variation of Wilber first lower bound [Wil89]. This variation

is presented in [DHIP07]. It is called the interleave lower bound. Suppose the keys belong

to the universe {1, ..., n}, fix a perfect binary search tree P (It can be complete if n is not a

power of 2). P is called the lower bound tree. For each node y in P , define the left region

of y as the nodes of left sub-tree of y plus y, and the right region of y as nodes of the right

sub-tree of y. Now, given an access sequence S =< s1, ..., sm >, for each node y in P , each

access si in S is either labeled in the left region or the right region of y. We discard any

access outside the sub-tree rooted at y. Now, for each y in P , we have a sequence of labels of

left and right region, we define the interleaving through y, denoted ivS(y), as the number

of alternation between left and right regions in the sequence. Consequently, we will define

the interleave lower bound of S, denoted by IB(S), as following

IB(S) =
∑
y∈P

ivS(y).

Using IB(S), we can have a lower bound on OPT (S).

Theorem 4.1 ([DHIP07]). Let n be the number of elements in the universe of keys, and S

be an access sequence, we have the following lower bound on OPT (S),

OPT (S) ≥ IB(S)/2− n.

Other lower bounds also exists, one of them knows as Wilber second bound, introduced

in [Wil89]. We will introduce this bound in addition the interleave bound in Section 6.4 as

wilder family of lower bounds.

5 O(log logn)-competitive BST

In this section, we will present the main work done in [DHIP07] which is a new BST

algorithm, named Tango Tree. This new BST achieve a O(log log n)-competitive ration

using the first Wilber lower bound, the interleave lower bound discussed in Section 4. This
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tree is based in an augmented lower bound BST P as it defined in Section 4. More precisely,

it is a perfect binary tree on the set of keys {1, ..., n}, assume n to be a power of 2 for

simplicity. Each internal node of P stores an additional information preferred child. For

a node y, if the last access was in the left region of y, that includes y, then the preferred

child is the left child. It is set to the right child, if the last access was in the right region.

However, if the access does not touch y, then y has no preferred child. Now, given the tree P

where each node may have a preferred child, we start from the root following the preferred

child pointer, we get a path that is called a preferred path. We store the preferred path

in a new auxiliary BST denoted by R. Then, we remove the preferred path from P , which

disintegrates P into a forest. We recurse on each tree in the forest. Then, the resulting BST

from each piece will be attached to R. In the next section, will describe how this auxiliary

tree works.

5.1 Auxiliary Tree

The auxiliary tree is defined as an augmented BST . The purpose of this tree is to store a

preferred path. The nodes of the tree are ordered by the key value. Each node of the tree is

augmented with additional value corresponds to its depth in the lower bound tree P . The

auxiliary tree performs the following operation in O(log k) where k is the total number of

nodes in the auxiliary tree(s) performed in the operation.

• Search for a key in the auxiliary tree.

• Cut the tree into two auxiliary tree based on a given depth at most d. The result will

be two auxiliary trees one stores path of nodes at depth greater than d and one less

than d.

• Join two auxiliary trees that store two disjoint paths where the deepest node of one

path is the parent of the shallowest node of the other.

The auxiliary tree is implement as Red-Black tree [DHIP07], described in Section 2. Each

node stores, the key value, the color (red or black), its depth in P , the min and max depth in

P for the node in its sub-trees. In the implementation of Red-Black tree the nodes that lack

a child points to a special value [Cor09]. However, in this case the pointer to a special value

may points to another auxiliary tree. In other words, this pointer points to an auxiliary tree

that corresponds to different preferred paths. The auxiliary structure that we have is a tree

if of auxiliary trees rather than a forest. To distinguish an auxiliary tree we mark its root.

According to [Cor09], the Red-Black tree performs search, split, and concatenate operations

in O(log k), where k is the number of nodes involved in the operation. We will make use of
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these operation to perform the above mentioned ones. The split and concatenate operations

can be described in the following way.

• Given a node x, a split on x returns a tree where x is the root, the left sub-tree of x

is a Red-black tree containing all the element small than x, the right sub-tree is also a

Red-Black tree containing the remaining element.

• Given a node x, concatenate operation will take the left and the right sub-tree of x

and arrange them into one Red-Black tree.

To perform the cut operation on an auxiliary tree A at depth d. The nodes at depth

greater than d form an interval over the keys in A. This observation is due that all the nodes

with depth greater than d are less than the node with depth at most d− 1 and consequently

its right child (if they are in a left sub-tree, similar reasoning if they are on a right sub-tree).

Therefore, no node after this depth is greater than a node in the right of the tree. Now, we

want to find the node ℓ of minimum key value with depth greater than d. This operation

can be done by constantly moving to the leftmost child whose sub-tree has maximum depth

greater than d. Then, find the node r with maximum key value whose depth greater than d.

Then, find the predecessor of ℓ, denoted by ℓ′, and the successor of r, denoted by r′. All the

target nodes are in the closed interval [ℓ, r], equivalently the open interval (ℓ′, r′). Now, use

the split of the red-black tree to split on ℓ′ and r′. The first split will create two sub-trees,

call B the left one, and C the right one. Since r′ ∈ C, the second split will split C into

two trees. D is a left sub-tree of r′ and E is the right one. Notice that D contains all the

nodes in (ℓ′, r′). After, the splits, we mark the root of D, as it is a new auxiliary tree by

itself. Now, we want make B, E, ℓ′, and r′ into one red-black tree. For this purpose, we

concatenate at r′ first, and ℓ′ second.

To perform the join operation on two trees A and B, find the tree that stores the node

with largest depth by comparing the max depth value stored in the root of each tree. Assume

A is the one with node of largest depth, then the tree B has set of nodes that fall into two

adjacent nodes of A, with key value ℓ′ and r′ respectively. Assume ℓ′ less than r′. To get

these value, search for the root of B in A. Then, split A at ℓ′ and r′ in that order (ℓ′ and r′

form an edge in A). We can attach the root of B to the left child of r′. It is clear that r′ has

no left child since it is strictly larger than ℓ′ and no node in A is between these two values.

Then unmark the root, and concatenate on r′ then ℓ′.

5.2 Tango Algorithm

Given an access xi, the tango algorithm change its state from Ti−1 to Ti i.e. it modifies the

tree of auxiliary trees that pictures the preferred paths in the lower bound tree P . The access
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algorithm follows the normal BST search toward the desired element xi. Along the way to

xi, the preferred children changes to make a new preferred path. The change of preferred

children indicates when the algorithm crossed from one augmented BST to the another. In

the tree of auxiliary trees that corresponds to when the algorithm touch a marked node y.

At this moment, we have to perform cut and join operation to construct the new preferred

path. Therefor, we cut the auxiliary tree that contains the parent of y at a depth one less the

minimum depth of nodes in the auxiliary tree rooted at y i.e. all the sibling of the minimum

depth node in tree rooted at y in P . Then, join the resulted top tree with tree rooted at y.

When we reach xi, we cut at depth of xi in the auxiliary tree containing xi, and join the top

path with preceding auxiliary tree.

The cost of this algorithm can be divided into two main parts. The first one is the cost of

searching of xi, and the second one is the cost of rearranging the tree which is proportional

to the time when a node changes its preferred child. Suppose that k is the number of nodes

whose preferred child changed. Then, at most we moved along k + 1 path and in each path

the search cost is O(log log n) since its auxiliary tree contains at most O(log n) node. Thus,

the total cost of search is O((k + 1) log log n). Similarly for rearrangement of the trees, we

perform at most one cut and one join per auxiliary tree, i.e. we updated path at most k+1

time. The cost of these operation is O(log log n) which yields a total of O((k + 1) log log n).

Now, we want to relate the behavior of the search algorithm to the interleave lower-

bound in order to analyse the competitiveness of the algorithm. Define the interleave bound

IBi(X) of access Xi to be the interleave bound on x1, ..., xi minus the interleave bound on

x1, ..., xi−1. Then, we can have the following lemma.

Lemma 5.1 ([DHIP07]). The additional interleave bound introduced by xi, IBi(X), is equal

to the number of nodes who changed their preferred children from left to right and right to

left during the access xi.

The proof of this lemma follows from the definition of the interleave lower bound. From

the previous Lemmas the following theorem follows.

Theorem 5.2 ([DHIP07]). Given a sequence X of m access on the universe {1, ..., n}, the
running time of the Tango BST on X is O((OPT (X) + n)(1 + log log n)), where OPT (X)

is the cost of the offline optimal BST computing X.

When m = Ω(n), the running time of Tango BST will be O((OPT (X) log log n).

6 Geometric Representation

In this section, we will introduce the Arborally Satisfied Set (ASS) and its relation to BST .

In addition, we will present algorithms to compute the ASS of a set of points, and explain
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its relation to dynamic optimality. Finally, we will discuss geometric lower bound resulted

from this geometric view of BST .

For the rest of this document, we will denote by n the number of elements stored in the

BST and m be the total number of search operations performed.

6.1 Arborally Satisfied Set

Consider the n×m grid subset of Z×Z. A point p = (p.x, p.y) is a point in this grid where

1 ≤ p.x ≤ n and 1 ≤ p.y ≤ m. We denote by □ab the axis-aligned rectangular region,

including the boundary , with corner a and b. We proceed to define Arborally Satisfied Set

of points.

Definition 6.1. Given a set of point P and a pair of points (a, b) ∈ P , we say they are

arborally satisfied with respect to P if they satisfy one of these two conditions.

1. They are horizontally or vertically collinear.

2. There exists one point q ∈ P\{ab} in □ab.

Definition 6.2. A set of point P in n×m grid is arborally satisfied if for any a, b ∈ P , The

pair (a, b) is arborally satisfied.

Figure 4: Example of an arborally satisfies set of points where the x-axis represents the key

space, and the y-axis the time. Source: Wikipedia

From the above definitions it is easy to see that if a set of points P is arborally satisfied,

then for any a, b ∈ P that are not on the same horizontal or vertical line there is at least one

point different from a and b on the sides of □ab incident to a and at least one on the sides

incident to b.

Now, given the BST model in the Definition 3.2, we can define a geometric view of a

BST execution E as follow.
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Definition 6.3 ([DHI+09]). Let E be a BST execution, the geometric view of E is the set

of points

P (E) = {(x, y)|x ∈ τy, for all y}.

where τy is set of touched node at time y.

In other words, at time i which is on y-axis, we plot all the nodes touched during the

execution. The point set resulted from the execution is arborally satisfied as the following

lemma states [DHI+09].

Lemma 6.1 ([DHI+09]). Given a BST execution E, the geometric view of E, denoted by

P (E) is arborally satisfied.

Till this moment, we had only a transformation from the execution sequence to a ge-

ometric representation. But it is not clear how this geometric model relates to the BST .

Surprisingly, given a set of points that are arborally satisfied, we can find a corresponding

BST execution as the following lemma states.

Lemma 6.2 ([DHI+09]). Given a set of points X that is arborally satisfied, then there exists

a BST execution E such that P (E) = X. E is called the arboral view of X and denoted by

E = P−1(X).

Proof. The proof is constructive, we will describe an algorithm that created the execution

sequence.

First define N(x, i) to be the next access time of x at i to be the minimum y coordinate

for any point in X on the ray from (x, i) to (x,∞). In other words, it is the most recent

time we accessed x from time i forward, it could include i as well. If no such point exists

then N(x, i) = ∞.

Let Ti be the treap defined on the points {(x,N(x, i))}. It is BST on x and min heap

on N(x, i).

Let τi = {(x, i) ∈ P}. This set of nodes in Ti form a connected component that includes

the root, since the root has the minimum access timeN(root, i) = i, because i is the minimum

possible access time. Now, to construct Ti+1, we just arrange the tree based on the new access

time N(x, i+1). It is clear that τi only needs to be arranged but. Thus, we have to show only

that Ti+1 is a treap on (x,N(x, i+ 1)). The BST property is trivially hold by construction,

rearrangement happen by right and left rotation that preserve the BST property. However,

the heap property is not obvious. We want to show that the heap property holds between

every parent/child pair (p, r) in Ti+1. If both, parent and child, where in τi then the property

hold by construction. Similarly if they both where outside, as their next access time does

not change by the move from time i to i + 1. The only case we need to examine is one the
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parent q ∈ τi and the child r /∈ τi. Suppose that the heap property is violated in Ti+1. Then,

the rectangle formed by (q, i) and (r,N(r, i)) violated the arborally satisfied property. The

vertical side at x = q is empty because N(q, i + 1) > N(r, i) by the heap property being

violated, and the horizontal line y = i is empty because if it is not the case q would not

be the parent of r. Thus, we are contradicting the assumption that X is arborally satisfied

point set.

The interesting idea behind this geometric representation is that we can start seeing a

reformulation of the dynamic optimally problem in a geometric stand point which might

add an new insight to tackle the problem. From the previous lemmas, we have shown

that given a sequence S = s1, ..., sm represented geometrically by a set of points P (S) =

{(s1, 1), (s2, 2), ..., (sm,m)}, its execution E induces a super-set of P (S), i.e. P (S) ⊂ P (E).

This super-set is also translate to a binary search tree. So, if we define minASS(P (S))

to be the smallest set of points that is arborally satisfied and contains P (S) then we have

OPT (S) = minASS(P (S)). In other words, minASS(P (S)) is the minimum execution we

can compute. Now, our problem is reduced to compute minASS(P (S)).

6.2 Online Arborally Satisfied Super-set

In the previous section, we saw an equivalence between finding an arborally satisfied set

and building an optimal BST . However, we want relate the problem of finding an arborally

satisfied set to an online BST i.e we want to be able to produce the transformation τi −→ τ ′i
after each si is revealed without having any information about the next access. Thus, we

can define the online arborally satisfied super-set problem as follow.

Definition 6.4 (Online arborally satisfied super-set, online ASS [DHI+09]). Given a set of

points {(s1, 1), (s2, 2), ..., (sm,m)}, design an algorithm that receives each point at a time,

After receiving a point i, the algorithm must output a set of point Pi on the ith row, i.e y = i

such The set of point {(s1, 1), ..., (si, i) ∪ P1 ∪ P2 ∪ Pi is arborally satisfied. The cost of the

algorithm is
∑n

i=1 Pi.

Similarly to the previous section, an online BST gives an online ASS. However, the

converse is not clear as in the proof of Lemma 6.2, we used a knowledge of the future by

using next access time.

6.3 Greedy Algorithms

In this section, we present two greedy algorithms proposed to solve the minASS problem

and consequently computing OPT (S) for an access sequence S. The first algorithm is called

Greedy-Future and it is due to Lucas and Munro [DHI+09].
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The algorithm is as follow.

1. Touch only the nodes in the search path.

2. re-arrange the search path such that the next item in the access sequence is placed as

high as possible, and recurse on the remaining item.

Thus, suppose we are given an access si ∈ Ti, and τi is the search path of si. If si+1 ∈ τi

make si+1 the root and recurse on the right and left sub-tree. Otherwise, si+1 /∈ τi, the

algorithm rearranges the predecessor and successor from τi as the root and right child of the

root. Then recurse on the remaining part of the tree.

This algorithm on the trees side has a geometric counter part. The geometric algorithm

goes as follow.

1. Use a sweep line from bottom to up i.e increase the y coordinate.

2. Arborally satisfied the points with y ≤ i by adding minimal number of points at y = i.

More precisely, for any unsatisfied rectangle formed with (si, i) in one of its corner,

add the other corner at y = i.

The greedy aspect of the geometric view is pretty obvious as we want to a minimum

number of points. However, for the tree view, the greedy aspect manifests by making the

decision of only touching search path which is a cheaper than going outside the path.

Observe that the above mentioned algorithm is only dependent on the past, points with

smaller y-coordinate, which make it a suitable choice for online algorithm.

6.4 Geometric Lower Bounds

One important consequence of the geometric view is the reinterpretation of lower bounds

in geometric terms. In addition, it comes up with reach lower bounds the previous known

bounds by Wilber [Wil89] are special cases [DHI+09]. To introduce this bound, we start by

the following definition.

Definition 6.5 (Independent rectangles). Given two rectangles □ab and □cd, and a set of

points X in n×m integer grids. We say the two rectangles are independent if they are not

arborally satisfied and no corner of one rectangle is inside the other one.
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Figure 5: Example of independent rectangles.

The set of independent rectangles form a lower bound on OPT (X).

Theorem 6.3 ([DHI+09]). Given a set of points X, and suppose that I is an independent

set of rectangles in X, then

minASS ≥ |I|
2

+ |X|

For the special case of X = P (S) where S is an access sequence, then,

OPT (S) ≥ |I|
2

+ S

Notice that maximising |I| will give a better lower bound. We will denote the maximum

independent set of rectangles maxIRB(X). We will mention in the remaining of this section

an algorithm that computes a constant factor approximation. But before, we will present

Wilber 1 and 2 geometrically.

We can reconstruct Wilber first bound using the following algorithm from [DHI+09]. The

goal of the algorithm is to build a sequence of independent rectangles.

1. Let L = (ℓ1, ℓ2, ...) be any sequence of vertical lines.

2. Consider ℓ1.

(a) Examine the points of X sorted by y-coordinates.

(b) For each pair of consecutive points where a point pi on the left of ℓ1, and another

point pi+1 on the right.

(c) Output □pipi+1.

3. recurse on all the points of X and the lines to the left and the right of ℓ1

For Wilber second bound, we use the following algorithm from [DHI+09].

1. Consider X sorted in increasing order over the y-coordinates.

2. For each point p in order,
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(a) Consider the Orthogonal envelope of all points in the quadrant

{(x, y)|x < p.x, y < p.y}

(b) Consider also the Orthogonal envelop of all points in the quadrant

{(x, y)|x > p.x, y < p.y}

(c) Merge the two envelops.

(d) Sort the merged points according to y-coordinates.

(e) Draw a rectangle between any two consecutive points alternating between the two

quadrants.

The resulted rectangles are indeed independent that yield a lower bound on OPT (X).

In order to approximate maxIRB(X) for any X, we will introduce the following defini-

tions and algorithm.

Definition 6.6 (Signed Rectangles). Given a□ab, we say it is a (+)-rectangle ((−)-rectangle)

if the slop of the line ab is positive (negative).

Definition 6.7 (Signed Satisfaction). Given a set of point X, X is (+)-satisfied if all (+)-

rectangle are arborally satisfied. Similarly for (−)-satisfied set.

Now, we can define two kinds of minASS one for each type of rectangles. Thus, we will

denote by minASS(+)(X) the size of the minimum (+)-satisfied super-set of X. Similarly,

we can define minASS(−)(X). To compute minASS(+)(X), the authors of [DHI+09] propose

the following algorithm. (The algorithm can be modified for the (−) case).

1. Consider a horizontal line sweeping by increasing y-coordinates.

2. Consider the points on the sweep line

3. For each point p,

• For each unsatisfied (+)-rectangle formed with a point q bellow p, add the north-

west corner of the rectangle that is on the sweep line to satisfy it.

4. Return add(+)(X) as the set of added points disregarding X.

The output of this algorithm is strongly related to the independent (+)-rectangles. More

precisely, they are equal by the following lemma [DHI+09].
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Lemma 6.4. Given any point set X, there exists an independent set of (+)-rectangles, call

it IRB(+)(X) such that

|IRB(+)(X)| = |add(+)(X)|.

Combining this lemma with the following one.

Lemma 6.5. Let I be an independent set of (+)-rectangles in a point set X, then for any

(+)-satisfied super-set Y of X, we have

|Y | ≥ |I|+ |X|

Thus, |add(+)(X)| + |X| ≤ minASS(X) = OPT (S) for an access sequence whose X =

P (S). Similarly, we can apply the same reasoning on |add(−)(X)|.
Consequently, we can define the algorithm signed-greedy that computes both |add(+)(X)|

and |add(−)(X)|, and it returns the maximum between them plus |X|. The output will serve
as a lower bound over minASS(X) and consequently OPT (S).

A natural question is how much this algorithm, signed greedy, is close to maximum

independent rectangles maxIRB(X). It turns out that signed-greedy is within a constant

factor from maxIRB(X). More precisely,

signed− greedy(X) ≥ 1

4
maxIRB(X) +

1

2
|X|.

7 Conclusion

To sum up, in this short overview on dynamic optimality. We presented an log log n-

competitive BST , named Tango Tree. Furthermore, we discussed the geometric view of

BST and its consequences. It brings a new possible algorithm that is different from Splay

Tree that could be dynamically optimal.
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